• Title/Summary/Keyword: 터널안전

Search Result 919, Processing Time 0.029 seconds

Development of Safety Monitoring System for Operating Railway Tunnel (운용중인 철도터널의 안전관리 시스템 시범구축)

  • Lee, Su-Hyung;Shin, Min-Ho;Kim, Hyun-Ki
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.73-78
    • /
    • 2008
  • There has been need for safety monitoring systems for the social infrastructures. These infrastructures are subject to degradation over time, reduced functionality, and loss of functionality as a result of factors such as a wide variety of installation environments, natural disasters, and nearby work. Therefore, it is necessary to perform appropriate inspections, repairs, and renovations to ensure safe and efficient maintenance and operation. This paper introduces the example of the development of the safety monitoring system for operating railway tunnel. Tunnel profile measuring system using laser beam, crack gauges, accelerometer and a pluviometer were implemented to monitor the safety of a deteriorated tunnel. The measured data were transferred through wireless network and analyzed in real time. The safety criteria for tunnel stabilities and train operations are also discussed.

  • PDF

Understanding Facility Management on Tunnel through Text Mining of Precision Safety Diagnosis Data (터널시설물 점검진단 데이터의 텍스트마이닝 분석을 통한 유형별·지역별 중점 유지관리요소의 이해)

  • Seo, Jeong-eun;Oh, Jintak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.

Coupling mechanical phenomena with thermal, hydraulic and chemical phenomena (제 2주제 역학적 현상과 열.수리.화학적 현상과의 상호작용)

  • Detournay, E.;Van Sint Ian, M.
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.282-283
    • /
    • 1999
  • 핵폐기물 지하처분, 지열개발, 지하 환경의 안전과 제어 등과 관련된 문제에 있어서 암석 및 암반의 역학적 거동 외에 열·수리·화학적 상호작용에 대한 이해가 필요하다. 이미 전세계적으로 국가별로 혹은 공동연구를 통하여 열·수리·역학적 상호작용에 관하여 많은 연구가 진행되었으며 최근 화학적 상호작용에 대한 문제가 추가적으로 제기되고 있다. 특히 장기간의 지하 환경의 안정성에 미치는 중요한 요소로 크립현상과 열·수리 화학적 상호작용 연구에 대한 필요성이 제기된 바 있다. 이 중 열·역학적 상호작용에 대해서는 현장문제에 적용 가능한 만은 연구결과가 제시된 바 있으나 기타 상호작용에 대해서는 다양한시험방법과모델링으로 인하여 아직가지 통일된 의견이 제시된 바 없다. 제 2주제에는 총 92편의 논문이 접수되었으며, 이 논문들의 내용, 성격, 해석방법 등을 간략히 정리하였다.

  • PDF

Development of acoustic emission monitoring system for the safety of geotechnical structures (지반구조물 안전감시용 미소파괴음 계측시스템 개발)

  • Cheon, D.S.;Jung, Y.B.;Park, E.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.471-485
    • /
    • 2014
  • The monitoring method of geotechnical structures using acoustic emission(AE) and microseismicity(MS) is to detect the microscopic deformation and fracture behavior in the inner structures by measuring induced acoustics and vibrations. It can identify a pre-indication of failure by taking advantage of the characteristics that the amount and occurrence rates of AE and MS increase rapidly prior to large scale destruction of the target structures. The monitoring system consisting of high-quality sensors, high-speed data acquisition device and the operation program is required for the practical application of this method. Recently, the AE and MS monitoring systems have been localized. In particular, the developed operation software which can analyze and interpret the measured signals was demonstrated through a number of applications to domestic fields. This report introduces the configuration and features of developed monitoring system, then the challenges and future direction of AE monitoring in geotechnical structures are discussed.

Current Status of Technical Development for TBM Simulator (국내·외 TBM 시뮬레이터 개발 현황)

  • Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • Professional TBM Operator is in short supply worldwide, and insufficient construction experience of new personnel using TBM can lead to a decline in response capabilities when various construction risks occur. The fact that the TBM construction quality greatly depends on the skill and experience of the TBM operator, and the decrease in productivity due to insufficient skilled manpower, and the decrease in safety due to the decrease in skill level are frequently discussed problems in the TBM industry. To this end, several overseas companies and organizations have developed simulators, and a simulator is being developed in Korea. The International Tunneling Association is planning a comprehensive training, including classroom training, e-learning, simulator training and field training. Given the progress at home and abroad, TBM driver training and formal recognition of training through certification or licensing is expected to become the norm in the near future.

A study of comparative of evacuation time by platform type according to the propagation speed of smoke in subway platform fire (지하철 승강장 화재시 연기의 전파속도에 따른 승강장 형태별 피난시간 비교·분석 연구)

  • Kim, Jin-Su;Rie, Dong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.577-588
    • /
    • 2017
  • There are many constraints, both economically and ethically that experimenting human evacuation behavior in situations such as fire. Therefore, the evacuation behavior is simulated based on the existing studies. In recent years, the foundation has been established as computer performance advances, models closer to reality can be studied. In this study, the evacuation time in the subway platform was analyzed from modeling human behavior and smoke propagation in a fire. The evacuation efficiency was also examined by dividing the shape of the subway station platform by the stair position and comparing the evacuation times for each platform. As a result, it was found that the side platform was longer than the island platform by 36.82% more time to evacuation. The shape of the stairs is most advantageous in terms of evacuation form side type platform was 210 seconds and island type platform was 186 seconds, when a fire occurs in the center of the platform. And most favorable in location of evacuation stairs were located at 2/5 point and 4/5 from depending on the step location.

Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister (고준위 폐기물 처분용기 내진 해석 모델 개발)

  • Choi, Young-Chul;Yoon, Chan-Hoon;Kim, Hyun-Ah;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.316-324
    • /
    • 2014
  • In the underground 500 m depth, the high level radioactive waste disposal system is made by boring the tunnel in the base rock and putting the high level waste disposal canister that is the surrounding form with the buffer material. According to the many statistics, it is the tendency that the earthquake increases in the Korean peninsula every year. In case that the earthquake is generated, the disposal canister in the rock mass can be broken due to the shearing force in the underground. Furthermore, a major environmental problems can be caused by the radioactive harmful substances. In this study, the earthquake-proof type buffer material was developed with the protection method safely on the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-proof type buffer material was evaluated by using ABAQUS.

A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure (초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.671-686
    • /
    • 2018
  • Recently, earthquakes have occurred near Gyeongju and Pohang and the social demands are thus being increased for seismic analysis of tall buildings and their adjacent underground structure in big cities. Since most of the previous seismic analysis studies considered a tall building and an adjacent underground structure separately, however, they lack the analysis on dynamic mutual behavior between two structures. Therefore, in this study, a dynamic analysis with a full soil-structure interaction was performed for a complex underground facility with a tall building and an adjacent underground structure constructed on the bedrock with a surface layer. To improve the reliability, in particular, a pseudo-static analysis was performed and compared with the dynamic analysis results. It is comprehensively concluded that the analysis of adjacent underground structures being considered is more conservative than that of not considered.

Study on the discharge of soil particles and ground collapse through cracks in underground structures (지중구조물 균열을 통한 토립자 유출 및 지반함몰 특성 연구)

  • Kim, Ho-Jong;Kim, Kang-Hyun;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.699-715
    • /
    • 2019
  • Recently, in urban areas, cavities and ground collapse adjacent to underground structures are frequently reported. Several studies on the cavity generation by structure cracks have been made, however they are focused on the cause of cracks and settlement of the ground. In this paper, soil particle and groundwater discharge through pipe cracks and cavity generation mechanism are investigated. The theoretical analysis of the groundwater, which is the main factor of the drainage of the soil particles, and the particle transport mechanism and flow characteristics were investigated. An experimental model test was carried out to identify the mechanism of cavity generation by underground buried pipe cracks. The soil particle weight of discharge through the cracks, and the movement characteristics of the particles were analyzed using PIV. In this study, it is clearly identified that soil particle movements, cavity generation and ground collapse that occur in the ground are basically caused by the movement of groundwater.

Durability evaluation depending on the insert size of conical Picks by the field test (삽입재 크기에 따른 코니컬 커터의 현장 내구성 평가 연구)

  • Choi, Soon-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • In this study, the durability of conical pick cutter was compared and analyzed by pre- and post-test visual inspection, measurement of weight loss and wear volume through field test on two types of conical pick cutters applied to rotary drum cutter. In the visual inspection, it was found that only 9 inserts were lost in the slim type conical pick cutter. This result show that the thickness of the head cover surrounding a insert was important to maintain the insert during excavation. The weight loss and wear volume of the heavy type conical pick cutter were less than half that of the slim type. From these results, it can be confirmed that heavy type is more useful than slim type in hard rock. It should be noted that, when determining the wear loss of the conical pick cutter, the mutual comparison of the weight measurement and the wear volume measurement results may be different due to the unit weight of the material and the spalling caused by excavation.