• Title/Summary/Keyword: 터널설계변수

Search Result 137, Processing Time 0.021 seconds

A study on construction simulation of road tunnel using Decision Aids for Tunneling (DAT) (터널의사결정체계 (DAT)를 이용한 도로터널의 시공 시뮬레이션 연구)

  • Min, Sangyoon;Kim, Taek Kon;Einstein, H.H.;Lee, Jun S.;Kim, Ho Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.161-174
    • /
    • 2003
  • Applicability of the Decision Aids for Tunneling (DAT) technique is investigated in this study to better understand the efficiency of the decision making process during tunnel construction. For this, a traffic tunnel under construction is adopted and information on the construction procedure, i.e., overall geology, unit cost and construction time for each excavation process, is provided periodically. Various scattergrams in which cost-time simulation results are plotted are obtained according to the simulation methods and final prediction on the construction time/cost is made. It is found that the uncertainty in the cost distribution is greater than the uncertainty in the time distribution for each cycle simulation and the uncertainties in time and cost for the one time simulations are comparable. Future work will be concentrated on the updating scheme using the face mapping data and various parametric studies will also be performed.

  • PDF

Sensitivity analysis of design parameters influencing earth pressure acting on an arch-shaped cut and cover tunnel (아치형 복개 터널구조물에 발생하는 토압에 영향을 미치는 설계변수들에 대한 민감도 분석)

  • Bae, Gyu-Jin;Chung, Hyung-Sik;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.113-128
    • /
    • 2004
  • To investigate major influencing factors on earth pressure acting on an arch-shaped cut and cover tunnel, Monte Carlo simulation based quantitative sensitivity analysis was carried out for mechanical properties of ground as well as excavation configuration-related design factors. From the sensitivity analysis, it was intended that effects of earth pressures from different influencing factors on a cut and cover tunnel should be numerically identified. Output factors used in the sensitivity analysis such as vertical and horizontal earth pressures at different tunnel positions were obtained from the finite element analysis. In this study, it was revealed that depending upon positions where horizontal as well as vertical earth pressures were acting, they were differently influenced by the same input factors. In addition, earth pressures acting an cut and cover tunnel depended mainly on the embankment at crown and the inclination of cut slope.

  • PDF

Assessment of groundwater inflow rate into a tunnel considering groundwater level drawdown and permeability reduction with depth (터널굴착 중 지하수위 강하 및 깊이별 투수계수 변화를 적용한 지하수 유입량 변화 분석)

  • Moon, Joon-Shik;Zheng, An-Qi;Jang, Seoyong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • Groundwater seepage into a tunnel is one of the main causes triggering tunnel collapse and the consequent ground subsidence. Thus, it is important to estimate adequately the groundwater inflow rate and porewater pressure change during tunneling with time elapse. In current practice, Goodman's analytical solution (or image tunnel method) assuming homogeneous ground condition around a tunnel is commonly used for estimating groundwater inflow rate. However, the generally-used analytical solution for estimating groundwater inflow rate does not consider groundwater level drawdown and permeability change with depth, and the inflow rate can be overestimated in design phase. In this study, parametric study was performed in order to investigate the effect of groundwater level drawdown and permeability reduction with depth, and transient flow analysis was carried out for studying the inflow rate change as well as groundwater level and porewater pressure change around a tunnel with time elapse.

Behavior of the Segment Lining due to the Middle Slab and the Lateral Pressure Coefficient in Duplex Tunnel (복층터널에서 중간슬래브와 측압계수에 따른 세그먼트 라이닝의 거동분석)

  • Lee, Ho Seong;Moon, Hyun Koo
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.192-200
    • /
    • 2016
  • We analyzed the behavior of the lining segments considering the middle slab and lateral pressure coefficients when planning the construction of a duplex tunnel for the underground network. Reviewed segment lining analysis for research, the analytical model was determined for duplex tunnel. Also reviewed the vertical load, and a load of middle slab is considered the static load and the live load by vehicles. Section force by middle slabs a load applied was mainly generated in the lower tunnel had the greatest effect on the bending moment. In addition, the bending moment acting direction changes appeared with a large variable, and the section force according to the load applied to the middle slab is relatively constant and the effect on the segment lining from the smallest section force of the lateral pressure coefficient of 1.00 was found to occur appears most significantly. As a result of this research to identify the behavior of the slab and the segment lining by the effect of the lateral pressure coefficient (K) of the duplex tunnel will be able to present a method of the duplex tunnel structure is reasonable and economical design.

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Tunnel Stability Assessment Considering Rock Damage from Blasting Near to Excavation Line (굴착선 주변공 발파의 암반손상을 고려한 터널 안정성 검토)

  • 이인모;윤현진;이형주;이상돈;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.167-178
    • /
    • 2003
  • Damage and overbreak of the remaining rock induced by blasting can not be avoided during tunnel construction which may result in either short-term or long-term tunnel instability. Therefore, in this paper, a methodology to take into account the effect of blast-induced damage in tunnel stability assessment is proposed. Dynamic numerical analysis was executed to evaluate damage and overbreak of the remaining rock for the most common blasting pattern in road tunnel. Rock damage was quantified by utilizing the damage variable factor which is adopted proposed in continuum damage mechanics. The damaged rock stiffness and the damaged failure criteria are used to consider the effect of rock damage in tunnel stability analysis. The damaged geological strength index of the damaged rock was newly proposed from the relationship between deformation modulus and geological strength index. Also the Hoek-Brown failure criteria of the damaged rock was obtained using the damaged geological strength index. Analysing the tunnel stability with the consideration of the blast-induced damage of remaining rock, it was found that the extend of plastic zone and deformation increased compared to the undamaged rock. Therefore the short-term or long-term tunnel stability will be threatened when the rock damage from blasting is ignored in the tunnel stability analysis.

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

A case study on a tunnel back analysis to minimize the uncertainty of ground properties based on artificial neural network (인공신경망 기법에 근거한 지반물성치의 불확실성을 최소화하기 위한 터널 역해석 사례연구)

  • You, Kwang-Ho;Song, Won-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.37-53
    • /
    • 2012
  • There is considerable uncertainty in ground properties used in tunnel designs. In this study, a back analysis was performed to find optimal ground properties based on the artificial neural network facility of MATLAB program of using tunnel monitoring data. Total 81 data were constructed by changing elastic modulus and coefficient of lateral pressure which have great influence on tunnel convergence. A sensitivity analysis was conducted to establish an optimal training model by varying the number of hidden layers, the number of nodes, learning rate, and momentum. Meanwhile, the optimal training model was selected by comparing MSE (Mean Squared Error) and coefficient of determination ($R^2$) and was used to find the correct elastic moduli of layers and the coefficient of lateral pressure. In future, it is expected that the suggested method of this study can be applied to determine the optimum tunnel support pattern under given ground conditions.

Damage Assessment of Adjacent Structures due to Tunnel Excavation in Urban Areas (II) - Focused on the Variations of Building Stiffness Ratio - (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (II) - 지상 건물의 강성비 변화를 중심으로 -)

  • 김창용;배규진;문현구;박치현;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.81-98
    • /
    • 1999
  • The influence of tunnelling on buildings has become an important issue in urban areas. The problem is an interactive one: not only do tunnelling settlements affect existing structures, but existing structures affect tunnel-induced soil movements. In order to examine the constraint of surface settlement and the degradation of building damage parameters, 3-dimensional elasto-plastic finite element analyses are peformed. Also, in this paper, the results of the parametric studies for the variations of the damage parameters due to the ground movements are presented by utilizing 2-dimensional elasto-plastic finite element models, totally 162 models. The width of a structure, its bending and axial stiffness, its position relative to the tunnel and the depth of tunnel are considered. The interaction is shown by reference to commonly-used building damage parameters, namely angular distortion, deflection ratio, maximum building settlements, maximum differential settlements and horizontal strain. By introducing relative stiffness parameters which combine the bending and axial stiffness of the structure with its width and stiffness of soil, design curves are established. These give a guide as to the likely modification of the greenfield settlement trough caused by a surface structure. They can be used to give initial estimates of likely building damage.

  • PDF

A study on the characteristics of tunnel deformation and support system according to tunnel portal reinforcement method (터널 갱구부 보강방법에 따른 터널 변형 및 지보재 응력특성에 관한 연구)

  • Moon, Kyoung-Sun;Seo, Yoon-Sic;Kang, Si-On;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.625-639
    • /
    • 2018
  • This study is about the reinforcing type of reinforcement method which is reinforced in tunnel portal of tunnel with bad ground condition. Generally, it is known that the horizontal reinforcement method is more effective than the conventional reinforcement method. However, as a limitation of the tunnel construction technology, it is being constructed by the superposition reinforcement method. In recent years, high-strength large-diameter steel pipes and horizontally oriented longitudes (L = 30.0~50.0 m) construction technology have been developed. Therefore, it is required to study reinforcement method of tunnel portal reinforcement method. Therefore, 3-D numerical analysis (Midas GTS NX 3D) was performed by setting the reinforcement method (No reinforcement type, overlap reinforcement type and horizontal reinforcement type) and ground condition as parameters. As a result, it was considered that the reinforcement effect was the largest as the horizontal reinforcement type of the reinforcement method was the smallest in the displacement and the support material stress. Based on the results of the numerical analysis, horizontal steel pipe grouting was applied to the actual tunnel site. The displacement of the tunnel portal and the stress of the support material occurred within the allowable values and were considered to ensure sufficient stability.