• Title/Summary/Keyword: 터널거동평가

Search Result 282, Processing Time 0.026 seconds

Assessment of Tunnel Displacement with Weak Zone Orientation using 3-D Numerical Analysis (3차원 수치해석을 이용한 연약대 방향에 따른 터널 거동 특성 평가)

  • Yim, Sung-Bin;Jeong, Hae-Geun;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • A 3-D numerical analysis was carried out to observe potential effects of orientation of inherent weak zones to tunnel behaviors and stress distributions during tunnel excavation. Weak zones used for the analysis were placed at the upper 1D part from crown, on the crown and on the center of face, using orientations derived from the 6th RMR parameter for assessment of joint orientation effect on tunnel. Mechanical properties of rock mass were derived through a in-situ displacement measurement-based back analysis. Finally, a classification chart for crown settlement with five ranks based on orientation and location of weak zones is suggested.

Creep Characteristics of Rocks and Concrete - A Comparison (암(岩)과 콘크리트의 Creep 특성에 대한 비교평가)

  • Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.33-56
    • /
    • 2001
  • It is well known fact that all rocks exhibit brittle properties and time depends strain properties (creep). An understanding of the time dependent deformation behaviour of rocks is believed to be essential in the field of civil and tunnelling. The rock and concrete creep in various forms of loading conditions and physical environment are reviewed. A comparison of creep behaviour between rocks and concrete is provided, in order to bring two existing relatively independent methods of predicting creep strain closer together. It was felt that the physical process in the creep of rocks would be similar to the process in creep of concrete. Since experiments and observations have shown that non-elastic (creep) mechanical behaviour of all crystalline solids (i.e., concrete, rocks, ceramics and refractories) and single materials have a common base. Also a comparison of the results for the accepted methods of estimating creep in rocks and concrete under - multiaxial loading was attempted to extend the knowledge of deformational characteristics of these two materials.

  • PDF

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.

An Experimental Study on Smoke Movement by the External Wind in Road Tunnel Fires (도로터널 화재 시 외부 바람에 의한 연기거동 특성에 관한 실험적 연구)

  • Lee, Sung-Ryong
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.308-315
    • /
    • 2014
  • In this study, reduced scale experiments were carried out to evaluate the effect of external wind in a road tunnel fire. Experiments were conducted in a $1.1m{\times}0.5m{\times}50.4m$ tunnel. 4.5 litter gasoline was used as a fuel. Temperature, oxygen and carbon monoxide concentration were measured. Smoke reaching time to the tunnel exit was affected by the external wind. When a fire was fully developed, wind effect is reduced compared with the early stage of a fire. CO concentration was reached at more than 1,500 ppm.

Effect of tunnel connection on turbid water transport: Intake control (댐간 연결터널에 의한 탁수거동 해석(1): 취수설비 운영)

  • Jung, Kwang-Wook;Jung, In-Gyun;Kang, Chang-Seok;Yoo, Dong-Bae;Koo, Bon-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.564-564
    • /
    • 2012
  • 유역내에서 발생한 고탁수는 저수지로 유입됨으로써 용수 공급에 지장을 초래하고, 수환경 악화 및 하류지역의 정수비용 부담을 가중시키는 등 사회, 경제적으로 여러 가지 문제를 일으키고 있다. 우리나라 대부분의 다목적댐은 홍수기에 탁수로 인하여 다양한 문제를 겪고 있다. 탁수문제는 수중생태계를 파괴하고, 상수원을 오염시키며, 물이 가지는 관광자원으로서의 가치를 심각하게 훼손시키는 등 심각한 문제를 야기 시키고 있다. 특히, 최근에는 잦은 이상 집중강우 현상 때문에 탁수의 장기화 문제가 대두되면서 중요한 사회문제로 떠오르고 있다. 수자원의 효율적 이용을 극대화하기 위한 댐의 연결사업은 탁수의 인위적인 외곡이 발생하기 때문에 적절한 조절을 통해 그 영향을 최소화할 필요가 있다. 댐에서 물의 밀도는 온도, 염도 및 탁도 등의 변화로 인하여 일정하지 않고 시간과 공간에 따라 변화하며, 일반적으로 혼합되지 않고 밀도와 두께가 다른 층에 분리되어 존재한다. 여름철 집중 강우 시 유입되는 고탁수층은 저수지의 밀도성층으로 인하여 표수층 하부에 위치하며, 이를 적기에 배제하지 않을 경우에는 수평방향의 확산현상과 연직방향의 전도현상으로 인해 저수지 전역에 분포하게 되어, 탁수현상의 장기화를 유발한다. 본 연구에서는 EFDC의 댐의 수리 및 수질예측모형을 이용해 여름철 집중강우시 유입되는 고탁수의 도달시간과 탁수량 등을 예측 평가하였다. 댐의 취수탑이 설치되는 위치는 댐의 상류측으로 일반적인 댐 주변의 온도 및 탁수거동과는 다르기 때문에 이 부분을 반영하여 평가하여야 한다. 본 연구에서는 EFDC의 댐 수리 및 수질예측모형을 이용하여 여름철 댐으로 유입되는 탁수거동을 평가하고, 댐 연결터널로 유입되는 취수탑 앞의 탁수농도를 예측하여 적절한 선택취수를 통해 댐 연결로 인한 고탁수의 댐간 이동을 최소화하기 위한 취수설비 운영방안을 제시하였다. 총 6개의 홍수사상('99년 홍수, '02년 루사, '03년 매미, '06년 에위니아, '09년 홍수 등)을 선정하여, 홍수사상에 대한 시단위의 유입량자료를 이용하여 양 댐간 연결로 인한 탁수거동을 분석하였다.

  • PDF

The Risk Assessment of Tunnel Fire Through Real Scale Fire Test (실물터널 화재실험을 통한 터널화재 위험도 평가)

  • 최준석;최병일;김명배;한용식;장용재;이유환;황낙순;김필영
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-76
    • /
    • 2002
  • The real scale tunnel fire tests are carried out for the first time in domestic range to assess the extent of risk in the tunnel fire. The tunnel dimension is 465 m in length, 9.2 m in width and 6.5 m in height. Gasoline pools with 0.25 MW∼2.5 MW size and a 1500CC passenger car are used as fire sources. Six jet fans are used to change the flow velocity inside the tunnel. Temperatures at total 86 points in the tunnel are measured to find the temperature distribution and smoke behavior in the real tunnel fire. In the experiment, it is examined that the important parameters to assess the extent of risk in tunnel fire such as back layering of smoke front, descending of smoke layer and the fire size of a real passenger car.

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

Three-Dimensional Finite Element Analysis Considering Time Dependent Behavior Characteristic of Tunnel Support Materials (시간 의존적 거동 특성을 고려한 터널 지보재의 3 차원 유한요소해석)

  • Gang, Dong-Yun;Kim, Tae-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.330-332
    • /
    • 2017
  • 본 논문에서는 숏크리트 지보재의 시간 의존적 경화특성을 고려한 터널 지보재의 3차원 유한요소해석을 수행하였다. NATM터널에 대한 기존 숏크리트 지보재 해석방식에 의한 결과화 제안된 시간 의존적 해석방법의 결과를 비교함으로서, 시간의존적 특성이 숏크리트 지보재의 응력 및 내공변위에 미치는 영향을 분석하였다. 시간 의존적 특성을 고려한 3차원 해석방법이 숏크리트 지보재의 변형을 과소평가 할 수 있음을 확인하였다.

  • PDF

Structure movement-coping Waterproofing technology application for Railroad facilities (철도시설에 있어서의 구조물 거동대응형 방수기술의 적용)

  • Cho, Il-Kyu;Lee, Jong-Yong;Oh, Sang-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1964-1969
    • /
    • 2010
  • Recently, as construction market scale is getting bigger and transportation industry is developing, the underground structure construction such as subway, tunnel (excavation box) or shield tunnel structure is becoming more diverse, and its demand is gradually increasing. However, for the concrete structures constructed underground, the water leakage is occurred due to the expansion joint and construction joint, or movement, uneven settlement, excessive load and vibration during application causing cracks. Many waterproofing method and materials are used in jobsites, but areas such as underground railroad and subway that has movement and vibration at all times, the ability of waterproofing layer is declined causing repetitive water leakage due to crack, erosion and separation, which is a vicious cycle. Therefore, this study evaluates the responsiveness to a movement for adhesive/flexible waterproofing material that can cope with the vibration and the movement of the structure. Also to recommend a waterproofing technology that can cope with structure movement through examples of actual jobsite applications such as subway and tunnel where there are constant movement and vibration.

  • PDF

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.