• Title/Summary/Keyword: 태풍 전.후

Search Result 64, Processing Time 0.016 seconds

Performance Based Evaluation of Concrete Carbonation from Climate Change Effect on Curing Conditions of Wind Speed and Sunlight Exposure Time (기후변화의 풍속과 일조시간 양생조건에 따른 콘크리트 탄산화 성능중심평가)

  • Kim, Tae-Kyun;Shin, Jae-Ho;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.45-55
    • /
    • 2015
  • Currently, extreme weather events such as super typhoon, extreme snowfall, and heat wave are frequently occurring all over the world by natural and human caused factors. After industrial growth in the 1970s, earth's temperature has risen sharply. due to greenhouse effect. Global warming can be attributed to gases emitted from using fossil fuel such as average carbon dioxide, perfluorocarbons, nitrous oxide, and methane. Especially, carbon dioxide has the highest composition of about 90%. in the fossile fuel usage emitted gas. Concrete has excellent durability as a building material climate change. However, due to various of physical and chemical environmental effect such as conditions during its curing process, the performance degradation may occur. Carbon dioxide in the atmosphere causes steel corrosion and durability decreases by lowering the alkalinity of concrete. Therefore, in this study, concrete durability performance with respect to carbonation from curing conditions change due to wind speed and sunshine exposure time. Concrete carbonation experiment are performed. using wind speed (0, 2, 4, 6) m/s and sunlight exposure time (2, 4, 6, 8) hrs. Also, performance based evaluation through the satisfaction curve based on the carbonation depth and carbonation rate test results are performed.

Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis (다중회귀분석을 이용한 낙동강 하류의 Chlorophyll-a 농도와 복합 영향인자들의 상관관계 분석)

  • Lim, Ji-Sung;Kim, Young-Woo;Lee, Jae-Ho;Park, Tae-Joo;Byun, Im-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.253-261
    • /
    • 2015
  • In this study, Chlorophyll-a (chl-a) prediction model and multiple parameters affecting algae occurrence in Mulgeum site were evaluated by statistical analysis using water quality, hydraulic and climate data at Mulgeum site (1998~2008). Before the analysis, control chart method and effect period of typhoon were adopted for improving reliability of the data. After data preprocessing step two methods were used in this study. In method 1, chl-a prediction model was developed using preprocessed data. Another model was developed by Method 2 using significant parameters affecting chl-a after data preprocessing step. As a result of correlation analysis, water temperature, pH, DO, BOD, COD, T-N, $NO_3-N$, $PO_4-P$, flow rate, flow velocity and water depth were revealed as significant multiple parameters affecting chl-a concentration. Chl-a prediction model from Method 1 and 2 showed high $R^2$ value with 0.799 and 0.790 respectively. Validation for each prediction model was conducted with the data from 2009 to 2010. Training period and validation period of Method 1 showed 20.912 and 24.423 respectively. And Method 2 showed 21.422 and 26.277 in each period. Especially BOD, DO and $PO_4-P$ played important role in both model. So it is considered that analysis of algae occurrence at Mulgeum site need to focus on BOD, DO and $PO_4-P$.

Seasonal Distributional Characteristics of Phytoplankton Adjacent to the Oyster Farming Area of Hansan-Geoje Island (한산도-거제도 동부 굴 양식장주변에서 식물플랑크톤의 계절적 분포특성)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.647-658
    • /
    • 2018
  • The aim of this study is to investigate the seasonal changes of phytoplankton communities based on the environmental changes in a dense oyster farming area (Hansan-Geoje Island) from June to December 2016. The water temperature varied from $14^{\circ}C$ to $28.8^{\circ}C$ and its salinity ranged from 29.4 to 34.2 psu. Nitrate+nitrite was kept at c.a. $3.0{\mu}M$ on the surface layer from June to July, below the concentration limit in August and early September, and then gradually increased from late September. Ammonia was high on July 20 and August 10, and its seasonal characteristics were not clear. Phosphate ranged from 0.01 to $0.7{\mu}M$ on the surface layer, and its seasonal changes were similar to those of nitrate+nitrite. Mean silicate concentrations were $10.7{\mu}M$ on the surface and $15.7{\mu}M$ in the bottom layer, and it was not acted as a limiting factor for the growth of phytoplankton. Among the phytoplankton community, Bacillariophyceae, Dinophyceae and Cryptophyceae was 61.2%, 22.5%, and 13.6%, respectively. In late June, dinoflagellate Prorocentrum donghaiense was dominant in the outer waters(St. T1), later on, Cryptomonas spp. and Chaetoceros spp. were dominant, respectively. From late September to October, diatoms Pseudo-nitzschia spp. and Chaetoceros spp. were stimulated under non-stratified condition after the typhoon. In December, A. sanguinea was found to be $1.7{\times}10^5cells\;L^{-1}$. Seasonally, relative high phytoplankton biomass may be favorable to maintain high production of filter feeder oyster in the dense oyster farming areas of Hansan and Geoje Island.

Management Plan for Humanistic and Ecological Characteristics of Suweol Village Forest in Tongyoung (통영 수월숲의 인문학적 특성 및 생태적 특성을 고려한 관리방안)

  • Lim, Eui-Jea;Lee, Soo-Dong;Kim, Mi-Jeong
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.85-98
    • /
    • 2013
  • In order to propose effective conservation management plan, this study verified ecological characteristics, humanities and Social characteristics. The research site is private property which is owned belonging to the Kim's of Gimhae that have long history. The study site is more than a thousand years old and was created for protecting from typhoon. There held the religious ritual what is called Dongsinje until 1960s. There have been protected and managed by the villagers. As the results of analysis, the area of windbreak are $12,392.69m^2$. The windbreak is dominated old years deciduous broad-leaved tree such as Zelkova serrata, Celtis sinensis, Aphananthe aspera. Around there were farmlands(52.1%), urbanized area(26.3%), forest area(16.6%). The vegetation communities of windbreak were classified by considering the dominant species and current status of forest. The forest types are following as; A. aspera community(I) which is using less pressure, Platycarya strobilacea-Carpinus coreana-Z. serrata community(II). Z. serrata community(III) which is using high pressure, Z. serrata-A. aspera community(IV), Z. serrata community(V) which is damaged under canopy trees. The windbreak was in good condition whereas, there were concerns the some wrong status was being undermined such as the wrong forest restoration projects in the past, the trails that is penetrating inside the forest, building up education facilities. Therefore, in order to restore the value of windbreak what is so called Suwol forest, we should improve the problems of forest ecosystem such as wrong management, forest fragmentation by facilities and decline in forest by lack of growing the next generation trees. In addition, we should remove excessive resting facilities and lead to passive use of forest. to improve the way of wrong management, moreover, we should close off he trails that is penetrating inside the forest for improving fragmentation. We should restore vegetation restoration and fostering the next generation trees for forest ecosystem. In order to restore unique of histo-cultural and ecological forest landscape, the next generation trees should be grown up that is the dominant species in Suwol forest. Moreover, as a results of comparing the between good vegetation communities and damaged vegetation communities, it is necessary to complementary planting for demeged vegetation communities, therefore there needs to 10.8 under canopy trees, 79.7 shrubs.