• Title/Summary/Keyword: 태양 전지 모듈

Search Result 344, Processing Time 0.034 seconds

Flow simulations of the wet station dryer module for the solar cell manufacturing (태양전지 제조용 세정장비의 건조모듈 유동해석)

  • Hong, Joo-Pyo;Lim, Ki-Sup;Yoon, Jong-Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • Hot air flow simulations of the wet station dryer module for the solar cell cleaning were conducted. Air incident angles such as to the substrates ($45^{\circ}$), to the bottom ($90^{\circ}$), and to the wall ($135^{\circ}$) were considered. Based on the simulated velocity and temperature profiles, appropriate incident angle was proposed, and it was well matched to experimental results. Additionally, uniform and non-uniform air hole sizes of the tube were compared for the uniform air flow distribution through the batch.

A Study on the Parameter Estimation of Solar Cell Module (태양전지 모듈의 파라미터 추정에 관한 연구)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • It is necessary to measure the solar cell parameter fur understanding characteristic of solar cell and applying to many other fields. Since photovoltaic system consists of solar cell module, which are connected each other in series and parallel, it is not proper to apply a solar cell parameter to photovoltaic system. Therefore, to estimate the solar tell module and to solve the problem of the established algorithm is on demand. In this paper the authors have improved the accuracy of solar cell module Parameter estimation by compensating series and Parallel resistance, and developed a new parameter estimation algorithm, which can be applied to photovoltaic system without high cost measuring equipment. And the validity of proposed algorithm is verified by the simulation and experimentation.

A Study on the Element Technology for PV Module Manufacturing (태양전지모듈 제조를 위한 요소기술연구)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Un;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1365-1367
    • /
    • 2003
  • In this paper, element technologies such as soldering. arrangement and lamination processes for photovoltaic module manufacture were examined and described as main processes. Especially solder paste and temperature condition in soldering process, loss factor in arrangement process and process conditions in lamination process are investigated to minimize the electrical loss. As a results, temperature condition in soldering process was found to be critical to contact resistance of electrode and life-time. Productivity of the process decreases dramatically by physical damage during arrangement process. Pressure level and press condition of upper chamber in lamination process were important parameters for the reliability. According to the test result of photovoltaic module, electrical properties dropped about $5{\sim}25%$ after 5 years.

  • PDF

The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property (태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

Analysis of Roof Integrated Photovoltaic Module's Performance with Insulation Hybrid Structure Layer (단열복합 구조에 따른 지붕일체형 태양전지모듈의 성능 분석)

  • Kang, Gi-Hwan;Kim, Hyun-Il;Park, Kyung-Eun;Yu, Gwon-Jong;Yi, So-Mi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1220-1221
    • /
    • 2007
  • Building-integrated photovoltaic(BIPV) perform traditional architectural function of walls and roof while also generating electricity. But most of the absorbed solar energy appears passively as heat, raising the temperature of cells and reducing the efficiency with which the active part is converted into electricity. Therefore this paper presents the comparison of electrical, architectural and thermal performance of roof integrated photovoltaic(PV) modules, which is composed of different hybrid structure layer such as urethane form, waffle stud etc.

  • PDF

Observation of Electrical Properties in Field-aged Photovoltaic Module (Field aged 태양전지모듈의 노화현상에 따른 전기적 특성 관찰)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16% drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20% mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to $30^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around $15^{\circ}C$ at the encapsulant discoloration spot of PV array.

  • PDF

Temperature Study of the Efficiency in single-crystalline Photovoltaic Module (결정질 실리콘 태양전지 모듈의 온도 상승에 따른 효율변화특성)

  • Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.111-112
    • /
    • 2005
  • It is well known that the efficiency of photovoltaic modules decreases with an increase of temperature. In this paper, both efficiency and maximum power(Pm) variation with temperature are investigated using numerical simulation. Various carrier transport mechanisms and several recombination parameters of all the cell materials are taken into account. The theoretical result are compared with the reference data and they are shown to agree quite well over a wide range of temperatures.

  • PDF

Production and Present Status of Photovoltaic Modules in Korea (국내 태양전지모듈 제조기술 및 보급 현황)

  • Kang, Gi-Hwan;Kim, Hyun-Il;Park, Kyung-Eun;Park, I-Jun;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1762-1764
    • /
    • 2005
  • This paper presents manufacturing techniques and distribution status of photovoltaic(PV) module for the success of domestic PV industries. The domestic PV production facilities were about 21MW at the end of 2004. Now it is about 51MW. By 2005 a increase of production facilities expect approximately 70$\sim$80MW. Also domestic PV cumulated installations up to 2004 was about 9,358kW and in 2004 PV system installed around 2,921kW which was increased about 2.8 times compared with last year.

  • PDF

The Electrical Characteristics of Spot Light Solar Cell Modules (집광형 태양전지 모듈의 전기적 특성에 관한 연구)

  • Kim, Beum-Jun;Kang, Ey-Goo;Lyu, Se-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.440-444
    • /
    • 2011
  • We have analyzed electrical characteristics of spot light solar cell modules and have completed fabrication of spot light solar cell modules. Before we test modules, we have carried about UV test of hologram. As a result of test, we have obtained 165% efficiency of hologram film. the other hand, we obtained 75% efficiency of general films. After we have fabricated solar modules and carried about field test, spot light solar cell modules with hologram have been investigated 17.3 A of Isc and 155.4 W of power.

The Analysis of Environmental Effects on Maximum Output Power Change of Crystalline Silicon Photovoltaic Module (결정질 실리콘 태양전지모듈의 최대 출력특성 변화에 영향을 미치는 환경요인)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Ji-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.12-13
    • /
    • 2007
  • In this paper, we studied the analysis of environmental effects on maximum output power change of crystalline silicon photovoltaic module. During the test period, there was a 5% reduction of maximum output power on an average. And the degree of output power uniformity became better compared to initial value. Using climate data like rain, snow and dust, we tried to find the reasons for maximum power fluctuation. The surface of PV module was monitored using microscope and infrared camera to study temperature distribution. The further analysis is described in the following paper.

  • PDF