• Title/Summary/Keyword: 태양위치

Search Result 461, Processing Time 0.023 seconds

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

Calculation of the Duration of Sunshine Using a Three-Dimensional Spatial Information Open Platform (3차원 공간정보 오픈 플랫폼을 활용한 일조 시간 산정)

  • PARK, Ji-Hye;SUH, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.80-89
    • /
    • 2017
  • Due to urban growth and increasing population density, many large cities contain building forests. Moreover, due to increasing demands for pleasant residential environments, there is growing concern over the encroachment of sunshine. Although research on related laws and other related fields is emerging, there is a limit to the extent to which the public can easily determine the amount of sunshine per building without referral to specialized agencies. Therefore, in this study, the duration of sunshine per building object was calculated via a simulation of urban shaded area using a spatial information open platform application programming interface. The study area was the'L'apartment complex located in the new city, Haeundae, Busan, China. To perform the duration of sunshine simulation for three-dimensional urban spatial objects, the building height was extracted from pre-built three-dimensional spatial information data, and the position of the sun was determined from calculations of the altitude and azimuth of the sun. This study provides a more precise and easier method of judging whether sunshine is impeded from reaching buildings by quantitatively analyzing sunshine and classifying the total duration of sunshine and the continuous duration of sunshine on each object.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

EMF (electromagnetic field strength)가 스퍼터된 ITO 박막의 초기 성장에 미치는 영향

  • Park, So-Yun;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.183-183
    • /
    • 2015
  • Indium tin oxide (ITO)는 넓은 밴드갭을 가지는 n-type의 축퇴 반도체로 태양전지, 스마트윈도우, 터치 센서, organic light emitting displays (OLEDs) 등에 널리 적용된다. 최근 touch screen panels (TSPs)의 높은 전기적 특성 및 고해상도 요구에 따라 고품질 ITO 박막개발의 수요도 증가하는 추세이다. 지금까지 ITO 박막의 물성 및 기계적 특성에 관한 많은 연구가 진행되어 왔지만 ITO 초박막 에서의 근본적인 물성 변화에 대한 연구는 미흡한 실정이므로, 이러한 연구는 필수적이라 할 수 있다. ITO 초박막은 광학적 특성은 우수하나, 낮은 결정성으로 인해 전기적 특성이 나쁘다는 단점을 가지며, 이러한 ITO 박막의 결정성은 초기 박막 성장과정에 많은 영향을 받는다. ITO 박막의 초기성장과정은 핵이 생성된 후(nucleation), 각각의 위치에서 성장하게 되고(growth), 합쳐지면서(coalescence) 연속적인 막을 형성 하는데(continuous), 이러한 초기 박막 성장 과정 중에 핵 생성 밀도를 증가시키고 박막이 연속적으로 되는 두께를 감소시킨다면, 더욱 더 고품질의 ITO 초박막을 얻을 수 있을 것이다. 따라서, 본 연구에서는 박막 초기 형성 과정 중 섬들이 합체되는 두께를 최소화시키기 위하여 EMF(electromagnetic field strength) 시스템을 이용하였다. EMF 시스템은 DC 캐소드에 전자석 코일을 장착하여 전자기장을 추가로 부가한 것으로, 이를 이용할 경우 스퍼터 원자가 중성상태로 기판에 도달하는 것이 아니라, 이온화되어 Vp-Vf의 차이로 가속되어 추가적인 에너지를 공급받음으로써 기판표면상에서 확산을 촉진시키므로 박막이 연속적으로 되는 임계 두께를 감소시킬 수 있는 것으로 기대된다. 실험은 실온에서 DC 마그네트론 스퍼터링법을 이용하였으며, 유리기판위에 4, 6, 8, 10, 12, 20 nm의 두께로 ITO 박막을 제작하였다. 스퍼터링 파워는 150 W (3.29 W/cm3), 작업 압력은 0.13 Pa, 기판과 타깃 사이의 거리는 70 mm였다. 각각의 두께에서 EMF 파워 0, 5, 10, 15, 20, 25, 30 W로 인가하여 박막을 제작한 후, EMF 파워에 따른 ITO 박막의 초기 성장 과정중 표면상태를 AFM (atomic force microscope) 이미지를 통하여 관찰하였다. 또한, 두께 약 8 nm에서와 20 nm일 때의 전기적 특성 및 광학적 특성을 관찰하였으며, 두 박막 모두 EMF 파워 15 W를 인가하였을 때 그 특성이 가장 향상되는 것을 확인하였다. 이러한 결과를 통하여 박막은 초기 성장이 중요하므로, 매우 얇은 두께에서 좋은 특성을 가진 박막을 제작하여야 박막의 두께를 증가시켰을 때도 좋은 특성의 막을 얻을 수 있음을 알 수 있었다. 또한, EMF 파워를 증가시킴에 따라 자장강도를 증가시키는 것과 같은 효과 즉, 플라즈마 임피던스가 감소하는 효과를 내어 증착 중 고 에너지 입자 (Ar0, O-)에 의한 박막손상이 감소한 것으로 판단된다. 따라서 적정 EMF 파워 15 W를 인가하였을때 가장 물성이 좋은 ITO 박막을 얻을 수 있었다. 즉, EMF 시스템을 이용하여 저온 공정에서 결함농도가 적은 고품질의 ITO 초박막을 제작할 수 있었다.

  • PDF

Retrieval of Relative Surface Temperature from Single-channel Middle-infrared (MIR) Images (단일밴드 중적외선 영상으로부터 표면온도 추정을 위한 상대온도추정알고리즘의 연구)

  • Wook, Park;Won, Joong-Sun;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.95-104
    • /
    • 2013
  • In this study, a novel method is proposed for retrieving relative surface temperature from single-channel middle infra-red (MIR, 3-5 ${\mu}m$) remotely sensed data. In order to retrieve absolute temperature from MIR data, it is necessary to accommodate at least atmospheric effects, surface emissivity and reflected solar radiance. Instead of retrieving kinematic temperature of each target, we propose an alternative to retrieve the relative temperature between two targets. The core idea is to minimize atmospheric effects by assuming that the differential at-sensor radiance between two targets experiences the same atmospheric effects. To reduce effective simplify atmospheric parameters, each atmospheric parameter was examined by MODTRAN and MIR emissivity derived from ASTER spectral libraries. Simulation results provided a required accuracy of 2 K for materials with a temperature of 300 K within 0.1 emissivity errors. The algorithm was tested using MODIS band 23 MIR day time images for validation. The accuracy of retrieved relative temperature was $0.485{\pm}1.552$ K. The results demonstrated that the proposed algorithm was able to produce relative temperature with a required accuracy from only single-channel radiance data. However, this method has limitations when applied to materials having very low temperatures using day time MIR images.

Distributions of the Temperature and Salinity in Kamak Bay (가막만의 수온과 염분의 분포)

  • LEE Kyu-Hyong;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.25-39
    • /
    • 1990
  • The distributions of the temperature and salinity in Kamak bay which has two channels and three sea bottom topographic parts were studied by taking the detailed hydrographic data at the ebb and flood during four seasons from May, 1988 to Feb., 1989. The general pattern of the distributions of characteristics which the temperature and salinity has in Kamak bay is basically formed by the topography and sea water movement of the bay. The changes of these distributions by seasons mainly come from the heating and cooling of the sea surface and the increase of the run-off. The bay has three remarkable water masses and the their general characteristics are follows: the inner bay water has a stagnation character influenced by the inland and the concave of the sea bottom in the north west, Yosu harbor water has an estuary character of the low salinity caused by the run-off of Somjin river and Yon Tung brooklet in the north east, and the outer bay water has an out-sea character, as it is located near by the big mouth in the south of the bay. The distributions of those water masses at the ebb and flood show some different features due to the flow patterns, and the daily changes of oceanic conditions at the vicinity of Hangdae-ri are so big that it may influence the habitation and production of the living things in the bay.

  • PDF

A Study on Performance Comparison of Multipurpose Function Electronic Measurement Reference Station Prototype System using LED and Gyro Sensor (LED 및 자이로센서를 이용한 다기능 전자측량기준점 프로토타입 시스템의 성능비교에 관한 연구)

  • Park, Sung-Kyun;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1247-1255
    • /
    • 2013
  • In this paper, We proposes multipurpose function electronic measurement reference station prototype system based on LED and Gyro Sensor. This system have developed to possible with real time data collection and landscape illumination and surrounding diastrophism monitoring for that analyze problems of existing planted reference station. Hardware for the proposed system consists of a gyro sensor module to detect diastrophism, GPS module to process location information, environment sensor module to process surrounding environmental data and CDMA wireless data communication to send the collected data to server. In addition, this paper intends to enhance system management and future usability in a way that applies LED, QR-code, RFID and Solar cell module to outer side of electronic measurement reference station to improve usability of H/W for electronic measurement reference station. Lastly, this paper conducted current amount evaluation to supply stabilized electricity with its various functions in the proposed multipurpose function electronic measurement reference station and it's proved that this system can be stably operated with its electricity loss factor of 2.29% loss factor. And this paper conducted a qualitative comparison with existing electronic measurement reference station system in order to evaluate superiority of the proposed electronic measurement reference station.