• 제목/요약/키워드: 태양열 온수 시스템

검색결과 76건 처리시간 0.022초

태양열 시설원예 난방시스템의 장기성능 특성 분석 연구 (Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system)

  • 이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

직접 및 간접식 자연순환형 태양열 온수급탕시스템의 열적성능 해석 (Thermal Performance Evaluation on Direct and Indirect Solar Thermosyphon System)

  • 전홍석;오정무;천원기;강용혁
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.74-81
    • /
    • 1988
  • A preliminary study has been done to investigate the thermal performance of an indirect system. Direct systems are also analyzed and the results are compared with those of the indirect system where possible. Values from the numerical simulation show very good agreement with the measured data. Although the indirect system is generally expensive and not as efficient as direct systems, it is more reliable in frigid weather conditions like the winters in Korea.

  • PDF

주거용 태양열 성층축열시스템의 시뮬레이션 (A Simulation for the Stratified Thermal Storage System in Residential Solar Energy Application)

  • 박이동;유호선
    • 태양에너지
    • /
    • 제11권3호
    • /
    • pp.44-52
    • /
    • 1991
  • 본 연구의 목적은 주거용 태양열 온수이용에 있어서 성층저장의 잠점을 평가하고 최적의 설계변수를 제시하되 실험이 아닌 시뮬레이션을 통한다는 것이다. 그 결과는 다음과 같으며 실험의 결과들과 잘 일치함을 보였다. 1. 탱크의 성층분활이 증가함에 따라서 태양부하율이 증가함을 보여 주었고 본 연구에서는 평균 10% 정도 증가함을 나타내었다. 2. 저장탱크의 높이 대 지름의 비가 3정도일 때가 태양부하율이 최대가 되었으며 그 이상이 되면 감소하는 경향을 나타내었다. 3. 집열기로 부터 저장탱크로 유입되는 온수의 유동율이 증가할 수록 완전혼합저장에서는 태양부하율이 증가하지만 성충저장에서는 유입율이 감소하는 것이 태양부하율을 증가시키는 결과가 되었다. 4. 이와 같은 결과로 성층축열시스템 전체적으로는 약 17%의 성능 향상을 기대할 수 있다.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

태양열시스템의 계절에 따른 온수급탕에 관한 운전특성연구 (A Study on the characteristic solar heat system with season)

  • 신영식;정성찬;차인수;최정식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.199-202
    • /
    • 2009
  • Domestic new recycling energy supply is on the way in various form and capacity locally through the support of governmen aid. Among these, solar energy supply is the most in scale and facility. In this paper, we intended to analysis the characteristics of solar energy operation system with season.

  • PDF

봄철 태양열 하이브리드 시스템의 부하조건 변화에 따른 운전특성 연구 (Study on the Operating Characteristics with Load Condition in Hybrid Solar Heating System during Spring Season)

  • 표종현;김원석;조홍현;류남진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1418-1423
    • /
    • 2009
  • This study describes experimental study on the performance characteristics with load condition in hybrid solar heating system during spring season. The room temperatures, the hot water conditions and the lower part temperatures of heat storage tank were changed to analyze the system performances. As a results, the hot water was significantly affected by the ambient temperature. The indoor setting temperature affected the solar fraction. When the low part temperature of the storage tank increased, the temperature of the hot water rose and the temperature of the hot water in morning was affected by the ambient temperature.

  • PDF

혹한기 지역에서의 자연순환형 태양열 시스템 동파방지 (Freeze Protection for Passive Solar Water Heating System in Bitter Cold Areas)

  • 권재욱;김종현;홍희기
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.41-46
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and excessive electric power consumption. In the experimental device, hot water in a storage tank was circulated by a small pump and used to heat the outdoor pipes if the cold water pipe surface temperature falls lower than a set point. As a result, It was observed that there was no hot water waste while the solar water heating system operated without freeze and burst.

산업용 고효율 태양열집열기 개발 필요성 (Status of High-Efficiency Solar Collector for Industrial Utilization)

  • 곽희열
    • 태양에너지
    • /
    • 제18권2호
    • /
    • pp.19-29
    • /
    • 1998
  • 국내 소비 에너지 사용량의 약 97%를 수입에 의존하고 있고, 지구온난화와 관련된 환경문제가 심각하게 대두되고 있는 실정이다. 또한 우리나라 에너지 부문별 소비형태에서 47%를 차지하는 산업용의 에너지 소비는 대부분 유류애 의존하고 있고, 그 중에서도 제조부분의 소비가 91.5%로 나타나고 있어, 이 부분에 대체어네지원의 개발, 대체 시스템의 적용이 절실히 요구되고 있다. 우리 나라에서도 국가적 에너지 절약과 쾌적한 주거환경 및 생활의 편리함을 위해 기존 화석에너지로부터 무공해 청정에너지(Clean Energy)로 그 사용형태가 바뀌어 가는 지금 그 양과 질적인 면에서 무한정이고 무공해인 대체 에너지원으로서의 태양에너지는 다양한 이용분야가 개발되어 실용화되고 있다. 국�K의 경우 대표적으로 평판형 태양열집열기를 이용한 온수급탕 시스템을 들 수 있고, 냉난방, 산업공정열 및 태양열 발전 분야에 대한 실용화 및 타당성 연구가 활발히 진행되고 있다. 따라서 본 고에서는 태양열 시스템의 중요한 구성요소인 고효율 집열기술에서 산업용 응용($70{\sim}150^{\circ}C$)에 적합한 것으로 기대되는 진공유리관형 태양열집열기, 국내 외 기술개발 동향과 산업공정열의 대체 가능성에 대하여 기술하였다.

  • PDF

태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구 (A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System)

  • 서호영;이경원;윤정훈;이순환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.