• Title/Summary/Keyword: 태양광 스트링

Search Result 38, Processing Time 0.025 seconds

태양광 인버터 개발 동향

  • Heo, Min-ho;Lee, Tae-won;Kim, Don-sik;Oh, Dong-sung;Park, Sung-jun;Won, Chung-yeon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.283-284
    • /
    • 2012
  • 2012년 태양광 인버터 시장은 유럽경제위기 등의 영향으로 성장률이 정체되고 가격, 효율 및 전력밀도에 대한 경쟁이 심화되면서 고효율 MIC와 개별 MPPT가 가능한 3상 스트링 인버터 차별화 기술 확보가 필수적이다. MIC의 경우 Interleaved Flyback Topology를 적용하고 최적 변압기 설계를 통해 연계 성능과 외함규격을 만족하고, 경부하시 Single Mode 운전 시퀀스를 제안하여 고효율 운전이 가능하도록 하였다. 또한, 유럽을 중심으로 수요가 증가하고 있는 소용량 3상 인버터의 경우 새로운 NPC2 Type 4Level Topology를 제안하여 넓은 사용자 입력 범위를 만족하고 무효전력 제어기준, 고효율 운전 및 Fault Redundancy 안전기준을 만족시키는 시스템을 구성하였다.

  • PDF

PWM Control Technique and Performance Analysis for DC-Link Ripple Reduction Module Integrated Converter Photovoltaic Systems (모듈 통합형 태양광 전력조절기의 DC-Link 리플 저감을 위한 PWM 제어 기법 및 성능 분석)

  • Jung, An-Yeol;Lee, Jong-Hyun;Park, Jong-Hu;Jeon, Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.70-71
    • /
    • 2010
  • 태양광 전력조절기에서 임의의 위상을 갖는 모듈통합형 스트링 구조는 출력 커패시터의 리플 크기가 모듈 수만큼 생기게 되어 일정 리플을 위한 커패시턴스를 키워야 하고 이는 크기 및 가격, 효율 면의 입장에서 불리한 요소가 될 수 있다. 본 논문에서는 모듈간의 위상 동기화를 통한 인터리빙 기법을 적용하여 DC-Link 전압의 리플이 저감됨을 분석 및 시뮬레이션을 통해 확인하고 이를 하드웨어 Prototype 제작하여 타당성을 검증하였다.

  • PDF

Shingled String for the High Performance Photovoltaic Module (고효율 태양광 모듈 제작을 위한 스트링 공정 최적화)

  • Jee, Hongsub;Moon, Daehan;Song, Jinho;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.119-123
    • /
    • 2018
  • The High Performance Module With The Shingled String Has Several Advantages Such As The Larger Active Area, Higher Open-Circuit Voltage And Smaller Cell To Module (Ctm) Loss. To Obtain Increase Of Power In Pv Shingled Module, The Detailed Condition Of Various Parameters Related To Cutting And Bonding Process Were Investigated In This Study. We Searched The Optimized Cutting Conditions Of Laser Scan Speed, The Number Of Laser-Scribing And Also Bonding Conditions Of Electrically Conductive Adhesives (Eca) By Varying Amount Of Eca, Curing Time And Curing Temperature. The Shingled Pv Module Showed 25.4W of Maxmimum Power At 60 Rpm Of Dipensing Motor Speed, 30 Seconds Of Curing Time And $140^{\circ}C$ Of Curing Temperature, Respectively.

A Study on the Technical Standard of Micro-Inverter for Domestic Photovoltaic Power Generation (국내 태양광발전용 마이크로 인버터 기술기준에 관한 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • In order to overcome the drawbacks of low rated power of the string inverter, the necessity of micro -inverters and future development directions will be examined by comparing the power conditioner system with existing PCS using micro inverter. Currently, string inverters have been used in household solar power generation systems, and research and penetration of micro-inverters(PV-MIC) have been expanding, which can overcome the shortcomings of string inverters starting from Europe. However, in the PV inverter industry, precise technical standards, test measurement equipment and related test methods for micro-inverters(PV-MIC) are obstacles to product development. Therefore, in this paper, considering the characteristics of micro-inverter (PV-MIC), it aims to make it competitive so that it does not lag behind advanced technology change through test measurement equipment and related technical standard.

A Study on Module-based Power Compensation Technology for Minimizing Solar Power Loss due to Shaded Area (음영지역 발생으로 인한 태양광 발전손실 최소화를 위한 모듈부착형 전력보상기술에 관한 연구)

  • Kim, Young-Baig;Song, Beob-Seong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.539-546
    • /
    • 2018
  • Recently, as the solar power generation market is rapidly increasing, interest is focused on research for minimizing the output of the solar cell module. The role of the power optimizer is important when inconsistencies occur in photovoltaic power generation. In the conventional system, centralized inverter method and microinverter method are mainly used. In this paper, we analyze the problem of power generation efficiency loss due to the incompatibility of existing system configuration methods. We also proposed a module - type power compensation method that can improve the mismatch caused by shading. The proposed module - based power optimizer is implemented and compared with the existing operation method. From the simulation result, it was confirmed that the efficiency of the proposed operation method is improved compared to the existing method.

Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules (투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작)

  • Kim, Han Jun;Park, Min-Joon;Song, Jinho;Jeong, Taewung;Moon, Daehan;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.

Fault Diagnosis of PV String Using Deep-Learning and I-V Curves (딥러닝과 I-V 곡선을 이용한 태양광 스트링 고장 진단)

  • Shin, Woo Gyun;Oh, Hyun Gyu;Bae, Soo Hyun;Ju, Young Chul;Hwang, Hye Mi;Ko, Suk Whan
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2022
  • Renewable energy is receiving attention again as a way to realize carbon neutrality to overcome the climate change crisis. Among renewable energy sources, the installation of Photovoltaic is continuously increasing, and as of 2020, the global cumulative installation amount is about 590 GW and the domestic cumulative installation amount is about 17 GW. Accordingly, O&M technology that can analyze the power generation and fault diagnose about PV plants the is required. In this paper, a study was conducted to diagnose fault using I-V curves of PV strings and deep learning. In order to collect the fault I-V curves for learning in the deep learning, faults were simulated. It is partial shade and voltage mismatch, and I-V curves were measured on a sunny day. A two-step data pre-processing technique was applied to minimize variations depending on PV string capacity, irradiance, and PV module temperature, and this was used for learning and validation of deep learning. From the results of the study, it was confirmed that the PV fault diagnosis using I-V curves and deep learning is possible.

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

Design and Control of Interleaved Boost converter for Multi-string PV Inverter (멀티스트링 태양광 인버터용 인터리브드 부스트 컨버터의 설계 및 제어)

  • Kang, Young-Ju;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, design and control of an interleaved boost converter for multi-string PV Inverter are discussed. Interleaved Boost converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. One of the advantages of the multi-string system is easy to expand power capacity by connecting the converter modules in parallel. In order to reduce current ripples, the inductor currents on each phase are controlled independently in the converter module, and communication between the converter modules is required for further ripple current reduction. Current control algorithm for the balance of the each phase ripple currents and synchronization of the converter modules based on communication are proposed and implemented in the DSP programming. 10kW prototype of the multi-string converter module is assembled and experimental results are presented to verify the proposed ripple current reduction methods.

Detection of Aging Modules in Solar String with Jerk Function (Jerk 함수를 적용한 태양광 스트링 내의 노후화 모듈 검출 기법)

  • Son, Han-Byeol;Park, Seong-Mi;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.356-364
    • /
    • 2019
  • In this study, major problems, such as licensing problems due to civil complaints, deterioration of facility period, and damage of modules, are exposed to many problems in domestic businesses. Particularly, the photovoltaic (PV) modules applied to early PV systems have been repaired and replaced over the past two decades, and a new module-based aging detection method is needed to expand the maintenance market and stabilize and repair power supplies. PV modules in a PV system use a string that is configured in series to generate high voltage. However, even if only one module of the solar modules connected in series ages, the power generation efficiency of the aged string is reduced. Therefore, we propose a topology that can measure the instantaneous PV characteristic curve to determine the aging module in the solar string and the aging judgment algorithm using the measured PV characteristic curve.