• 제목/요약/키워드: 태양광열

검색결과 39건 처리시간 0.025초

실험에 의한 Glazed형과 Unglazed형 액체식 PVT 집열기의 에너지성능 비교 분석 연구 (Experimental Performance Comparison of Water Type Glazed and Unglazed PV-Thermal Combined Collectors)

  • 김진희;강준구;김준태
    • KIEAE Journal
    • /
    • 제9권4호
    • /
    • pp.37-42
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. The PVT collectors can produce more energy per unit surface area than side by side PV modules and solar thermal collectors. There are two types of water type PVT collectors, depending on the existence of glass cover over PV module; glass-covered(glazed) PVT module, which produces relatively more thermal energy but has lower electrical yield, and uncovered(unglazed) PVT module, which has relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of the water-based PVT combined collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT combined collectors were measured in outdoor conditions, and the results were compared.

태양광열-지열 이용 Tri-generation 시스템의 적정 용량 설계를 위한 해석 연구 (Study on the Optimal Capacity Design for Tri-generation System using PVT and GSHP)

  • 배상무;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.16-23
    • /
    • 2019
  • Renewable energy systems are essential for the realization of zero energy building (ZEB). Moreover, the integrated system using solar and geothermal energy has been developed for heating, cooling and power of the building. However, there are few studies considering various design factors for system design. In this study, in order to develop the optimal design method for the system, the performance of the system was quantitatively compared and analyzed through dynamic simulation. Moreover, economic analysis was conducted based on the results of system performance. Through the performance and economic analysis results, the optimal design method of the tri-generation system was proposed.

국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석 (Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea)

  • 이관호;심광열
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석 (Study on the Analysis Performance of PVT system using the Dynamic Simulation)

  • 김상열;남유진
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

천리안 2A호 별추적기 태양 차폐각 궤도상 운영 검증 (Verification of the Star Tracker Sun Exclusion Angle of GEO-KOMPSAT-2A Through In-Orbit Operation)

  • 강우용;백광열;김승균
    • 한국항공우주학회지
    • /
    • 제49권3호
    • /
    • pp.243-249
    • /
    • 2021
  • 별추적기는 우주공간에서 미세한 별 빛을 감지한 후 저장된 별 목록과 비교하여 관성좌표계상에서 위성의 자세 정보를 제공한다. 별 이외에 태양이나 지구와 같은 다른 빛이 광학계(OH : Optical Head)로 들어가게 될 경우 별을 인식할 수 없음으로 별추적기를 운영할 수 없다. 특히, 태양과 같은 강한 빛이 들어올 경우 별추적기 운영뿐 아니라 성능에도 영향을 미친다. 별추적기의 태양 차폐각(SEA : Sun Exclusion Angle)은 별추적기의 성능을 결정하는 중요한 요소 중 하나이다. 본 논문에서는 별추적기의 태양 차폐각에 대한 검증을 수행하였다. 태양 차폐각 검증을 위해서 별추적기의 태양 차폐 시간을 예측하였으며 실제 천리안 2A호 별 추적기에서 발생한 태양 차폐 시간과 비교하였다. 또한, 광학계에 태양에 의한 차폐가 발생할 경우 별추적기가 정상적으로 동작하는지에 대한 분석을 수행하였다. 분석 결과 별추적기는 성능 요구사항인 26° 이내에서 태양 차폐가 발생하였으며 태양 차폐가 발생할 경우에도 정상 동작함을 확인하였다.

태양 열·전기 복합생산 단위 모듈의 실험적 성능비교 연구 (An Experimental Performance Comparison Study of Solar Heat and Power Hybrid Unit Module)

  • 이광섭;;강은철;이의준
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.757-762
    • /
    • 2014
  • 태양 열 전기 복합생산 시스템은 태양광을 이용한 전력생산과 더불어 열에너지를 동시에 생산하는 시스템이다. 본 연구에서는 태양 공기 열 전기 복합생산 단위모듈 실험 장치를 구현하여 실험하고 데이터 분석을 통한 표면온도에 대한 발전 효율증가와 열에너지 생산량을 제시한다. 실험은 기존의 태양광 방식과 공기열 복합생산 방식을 반복 수행하였다. 이 두 실험 데이터를 비교분석을 통하여 기존의 방식 대비 공기열 복합 생산 방식의 단위 표면온도에 대한 발전효율상승을 정량적으로 제시한다. 본 실험에서 공기열 태양 열 전기 복합 생산방식은 기존 태양광 대비 표면온도는 $13.52^{\circ}C$ 낮아졌고, 발전효율이 5.09% 상승하였다. 또한 공기열원 순환 시스템의 출입구 온도차이 $1^{\circ}C$$15.69W_t$의 열에너지를 생산한다. 따라서 본 논문에서는 실험적 데이터의 비교분석을 통한 결과로 공기열원 태양 열 전기 복합생산 시스템의 $0.34%/^{\circ}C$의 단위 표면온도당 발전 효율상승 수치를 제시한다.

태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구 (An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation)

  • 이광섭;앤드류;강은철;이의준
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구 (An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector)

  • 김상명;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

고효율 태양전지 제작을 위한 레이저 텍스쳐링 연구 (Study on laser texturing process for fabrication of high efficiency solar cell)

  • 고지수;정한욱;공대영;이원백;김광열;신성욱;박홍진;최병덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 2009
  • One of the most important issues of crystalline silicon solar cell is minimizing reflectance at the surface. Laser texturing is an isotropic process that will sculpt the surface of a silicon wafer, regardless of its crystallographic orientation. We investigated surface texturing process using Nd-YAG laser ($\lambda$=1064 nm) on multi-crystalline silicon wafer. Removal of slag formed after the laser process was performed using acid solution (HF : $HNO_3$ : $CH_3COOH$ : DI water). The reflectance and carrier lifetime of the samples were measured and analyzed using UV-Vis spectrophotometer and carrier lifetime tester. It was found that the minimum reflectance of the samples was 16.39% and maximum carrier life time was $21.8\;{\mu}s$.

  • PDF

다결정 태양 전지 효율 향상 위한 Laser 표면 texturing (Laser texturing on the surface for improvement of multi-crystalline solar cells)

  • 김태훈;김선용;고지수;박현호;김광열;조창현;신성욱;최병덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.364-364
    • /
    • 2009
  • The solar cell is in the spotlight as a future green energy source. In the solar cells based on silicon wafer, the improvement of efficiency is one of crucial issues. One of techniques for high efficiency is texturing on the surface of solar cells. We studied the laser texturing on the surface of multi-crystalline silicon solar cells. The laser texturing followed by chemical etching is adequate for the multi-crystalline structure which have random crystallographic directions. We used the fiber laser for texturing and the SiNx as a masking layer for etching process. We investigated the shapes of holes for texturing in the various laser power conditions and analyzed the holes after removal of thermal damages caused by laser ablation through a 3D profiler.

  • PDF