• Title/Summary/Keyword: 태양광에너지

Search Result 1,783, Processing Time 0.027 seconds

Ubiquitous sensor network based plant factory LED lighting system development (유비쿼터스 센서 네트워크 기반의 식물공장 LED 조명 시스템 개발)

  • Yang, Heekwon;Shin, Minseock;Lee, Chankil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.845-848
    • /
    • 2013
  • Due to intense climate changes and extreme weather conditions a noticeable decrease has been observed in the growth of certain plants. The indoor plant factories would have certain benefits including increase in crop yield, reduction in distribution cost, and maintains the healthy freshness level of the agricultural product. Recently, an artificial light source with optimum wavelength is spot lighted to fulfill the need of light for the indoor plant factories. The energy efficient light emitting diodes (LED) provide the essential light energy for the proper growth of indoor cultivated plants. This work focuses to utilize ubiquitous sensors network(USN) in providing suitable environment for the proper growth of agricultural product inside the indoor plant factory. The proposed system makes use of sensors and actuators, communicating each other through WPAN, ZigBee network. The proposed system obscured the traditional indoor plant factories with easy installation and wireless connectivity of the sensors and actuators along with eliminating the web of wires reducing the initial installation and maintenance cost.

  • PDF

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Network Performance Verification for Next-Generation Power Distribution Management System Using FRTU Simulator (FRTU 시뮬레이터를 이용한 차세대 배전지능화시스템 네트워크 성능검증)

  • Yeo, Sang-Uk;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • Power distribution management system is essential for the efficient management and operation of power distribution networks. The power distribution system is a system that manages the distribution network based on IT, and has been evolving along with the development of the power industry. The current power distribution system is designed to operate at a relatively low network transmission speed based on the independent operation of the main equipment. However, due to distributed resources such as photovoltaic or energy storage devices, which are rapidly increasing in popularity in recent years, the operation of future distribution environments is becoming more complex, and various information needs to be collected in real time. In this study, the requirements of the next-generation power distribution system were derived to overcome the limitations of the existing power distribution system, and based on this, the communication network system and performance requirements for the distribution system were defined. In order to verify the performance of the designed system, a software-based terminal device simulator was developed because it takes excessive time and cost to introduce a large-scale system such as a power distribution system. Using the simulator, a test environment similar to the actual operation was established, and the number of terminal devices was increased up to 1,000. The proposed system was shown to satisfy the requirements to support the functions of the next-generation power distribution system, recording less than 10 % of the communication network bandwidth.

A Study on Structural Analysis for Improving Driving Performance of Agricultural Electric Car (농업용 전기운반차의 주행성능 향상을 위한 구조해석에 관한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2020
  • The aging and declining agricultural population in the modern society requires improvement of the agricultural environment and is one of the representative problems. And since most of the work systems always require a transport work, the ratio of labor consumed in the transport work is very high. Accordingly, many types of transport vehicles are being developed and sold, and in the early days, most of them are powered transport vehicles using fossil fuels. However, it is paying attention to next-generation eco-friendly energy such as hydrogen, fuel cells, solar power, and bio due to the strengthening of international environmental regulations such as global warming and the Convention on Climate Change and the depletion of fossil fuels. Therefore, in this study, the ultimate goal is to develop an eco-friendly, easy-to-operate, safe agricultural electric vehicle that replaces fossil fuels. It was designed with a focus on controlling a wide range of vehicle speeds and securing stability of electric agricultural vehicles. Considering the performance and design, it is composed of a frame, a driving part, a steering part, and a controller system, and we are going to review and manufacture each part. It is believed that the manufactured electric vehicle for agriculture can be easily and conveniently operated in an agricultural society where young manpower is scarce, and can be helpful to the agricultural society through high efficiency.

Implementation of Prosumer Management System for Small MicroGrid (소규모 마이크로그리드에서 프로슈머관리시스템의 구현)

  • Lim, Su-Youn;Lee, Tae-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).

An Experimental Study on the Applicability of UAV for the Analysis of Factors Influencing Rural Environment - Focusing on Photovoltaic Facilities and Vacant House in Galsan-Myeon, Hongseong-gun - (농촌 공간 환경영향요인 분석을 위한 무인항공기 적용 가능성에 관한 실험적 연구 - 홍성군 갈산면의 태양광 발전시설과 빈집을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Su-Yeon;Kim, Young-Gyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Rural spaces are increasingly valuable as areas for introducing renewable energy infrastructure to achieve carbon neutrality. Rural areas are the living grounds of rural residents, and the balance of conservation and development for rural areas is important for the introduction of reasonable facilities. In order to maintain a balance between development and preservation and to introduce reasonable renewable energy facilities, it is necessary to develop a current status survey and an effective survey method to utilize a space capable of introducing renewable energy facilities such as idle land and vacant houses. Therefore, this study was conducted to verify the readability using an unmanned aerial vehicle, and the main results are as follows. The detection of photovoltaic power generation facilities using unmanned aerial vehicles was effective in analyzing the location and area of photovoltaic panels located on the roofs of buildings, and it was possible to calculate the expected power generation by region through the area calculation of photovoltaic panels. The vacant house detection can be used to select an investigation target for an vacant house condition survey as it can identify damage to buildings that are expected to be empty houses, management status, and electricity supply facilities through aerial photos. It is judged that the unmanned aerial vehicle detection capability can be utilized as a method to improve the efficiency of investigation and supplement the data related to solar power generation facilities and vacant houses provided by public institutions. Although this study detected the status of solar power generation facilities and vacant houses through high-resolution aerial image analysis, as a follow-up study, automatic measurement methods using the temperature difference of solar power generation facilities and general characteristics of vacant houses that can be read from the air were investigated. If the deriving research is carried out, it is judged that it will be possible to contribute to the improvement of the accuracy of the detection result using the unmanned aerial vehicle and the expansion of the application range.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.