• Title/Summary/Keyword: 태양광발전시설

Search Result 109, Processing Time 0.024 seconds

유리 기판 위에 합성된 기능성 나노코팅의 코팅 방식에 따른 특성분석

  • Park, Jong-Guk;Seon, Park-Mun;Choe, Won-Seok;Jeong, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.252.2-252.2
    • /
    • 2015
  • 야외에 설치 운영되는 태양광발전 시설과 설비들은 여러 요인들로 인해 쉽게 오염이 되고 이로 인한 효율 저하 및 유지 비용증가로 인하여 경제성이 저하되는 문제점을 가지고 있다. 본 연구에서는 기능성 나노코팅을 이용한 태양광 묘듈의 표면 코팅으로 내오염 특성을 향상시켜 오염에 의한 태양광 발전효율과 유지비용의 절감에 대한 방안을 제시하였다. 기능성 나노코팅은 태양광 모듈 커버글라스와 재질이 같은 유리 기판위에 코팅하였고, 코팅 방식에 따른 변화를 실험하였고, 코팅 방식으로는 딥핑(dipping), 스프레이, 천, 브러쉬를 사용하여 수행하였다. 유리 기판 위에 합성된 기능성 나노코팅의 특성분석은 내오염 특성, 광투과도, 접촉각, 부착력을 수행하였고, 실험에 활용된 기능성 나노코팅이 유리 기판 표면 오염방지에 탁월한 효과를 가짐을 확인하였다.

  • PDF

Validity of solar energy generation at the underused Space of LPG filling station (LPG충전소 유휴공간의 태양광발전설비 설치 유효성)

  • Lee, Minkyung;Kim, Jeonghwan;Lee, Jinhan;Joe, Youngdo;Lee, Yeonjae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is safety evaluation of solar energy generation which is installed on the canopy at the LPG filling station. in case of a gas station, the solar energy generation was become legalization through a related law reform in 2008. Also, in case of a LPG filling station, the solar energy generation was become legalization through a related law reform in 2015. So, the related law that KGS CODE and Safety control of dangerous substances law and the case of installed solar energy generation in gas, LPG filling station was investigated. two scenarios are supposed for the CFD. Release of safety valve pipeline and ruptured dispenser leakage are the scenarios. The FLACS which developed GexCon in Norway was used for simulation. LPG dispersion to the upper side of canopy was very small with safety distance.

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

A Study on the Generation Capacity and Cost Analysis of Solar-Wind Hybrid Power System (태양광-풍력 복합발전시스템의 용량 산정과 경제성 분석에 관한 연구)

  • Kim, Jong-Hwan;Lee, Seung-Chul;Kwon, Byeong-Gook;Oh, Hae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.348-350
    • /
    • 2003
  • 본 논문에서는 태양광-풍력 복합발전시스템의 발전용량 예측을 통한 시스템 시설투자비 및 발전단가와 경제성에 대하여 분석한다. 도시지역의 일사량 및 풍속 데이터를 기초로 하여 복합발전시스템의 일일 발전량을 구하고, 수용가의 일일부하패턴과 수요부하를 고려하여 태양전지 어레이와 풍력발전기의 용량을 산정한다. 그리고 용량 산정에 따른 복합발전시스템의 초기투자비용과 연간 발전량, 연간 소요경비 등의 요소를 고려하여 총 수명가 분석법(Total Life-Cycle Cost Analysis)에 기초한 발전단가를 계산하고 잉여전력을 계통에 판매할 경우의 경제성을 평가한다.

  • PDF

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

A Study for Planning Optimal Location of Solar Photovoltaic Facilities using GIS (GIS를 이용한 태양광시설 설치를 위한 적정지역 선정에 관한 연구)

  • Yun, Sung-Wook;Paek, Yee;Jang, Jae-Kyung;Choi, Duk-Kyu;Kang, Donghyeon;Son, Jinkwan;Park, Min-Jung;Kang, Suk-Won;Gwon, Jin-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • With the recent accelerated policy-making and interests in new renewable energy, plans to develop and supply the new renewable energy have been devised across multiple regions in Korea. Solar energy, in particular, is being applied to small-scale power supply in provincial areas, as solar cells are used to convert solar energy into electric energy to produce electric power. Nonetheless, in the case of solar power plants, the need for a large stretch of land and considerable sum of financial support implies that the planning step should take into consideration the most suitable meteorological and geographical factors. In this study, the proxy variables of meteorological and geographical factors associated with solar energy were considered in analyzing the vulnerable areas regarding the photovoltaic power generation facility across the nation. GIS was used in the spatial analysis to develop a map for assessing the optimal location for photovoltaic power generation facility. The final vulnerability map developed in this study did not reveal any areas that exhibit vulnerability level 5 (very high) or 1 (very low). Jeollanam-do showed the largest value of vulnerability level 4 (high), while a large value of vulnerability level 3 (moderate) was shown by several administrative districts including Gwangju metropolitan city, Jeollabuk-do, Chungcheongbuk-do, and Gangwon-do. A value of vulnerability level 2 (low) was shown by the metropolitan cities including Daegu, Ulsan, and Incheon. When the 30 currently operating solar power plants were compared and reviewed, most were found to be in an area of vulnerability level 2 or 3, indicating that the locations were relatively suitable for solar energy. However, the limited data quantity for solar power plants, which is the limitation of this study, prevents the accuracy of the findings to be clearly established. Nevertheless, the significance of this study lies in that an attempt has been made to assess the vulnerability map for photovoltaic power generation facility targeting various regions across the nation, through the use of the GIS-based spatial analysis technique that takes into account the diverse meteorological and geographical factors. Furthermore, by presenting the data obtained for all regions across the nation, the findings of this study are likely to prove useful as the basic data in fields related to the photovoltaic power generation.