• 제목/요약/키워드: 태양광발전량 예측

검색결과 6건 처리시간 0.016초

해양도시의 태양광 발전을 위한 일사량 예측기법 (Predict Solar Radiation for Photovoltaic System of Maritime City)

  • 원종민;도근영;이정재;정수연
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2010년도 춘계학술대회
    • /
    • pp.197-198
    • /
    • 2010
  • 태양광발전량의 예측에 대해 많은 선행연구가 진행되었으나 연간 또는 월별 총발전량을 비교하기 위한 것이 주류였기 때문에 연간 또는 월별의 평균일사량을 바탕으로 발전량을 예측 비교하고 있다. 그러나 도시차원에서 전력생산 및 공급의 최적화를 위해서는 시간 및 기상에 따란 변화하는 일사량과 그에 따른 발전량을 예측하여 효율적인 전력생산 공급계획을 수립할 필요가 있지만 기상예보에는 일사량 정보가 포함되어 있지 않기 때문에 기상예보에 제공되는 운량을 이용하여 일사량을 예측할 수 있는 기법개발이 절실하다. 본 연구에서는 해양도시인 부산을 대상으로 과거의 기상데이터 중 운량과 일사량을 이용하여 일사량 예측기법을 제안하고자 한다.

  • PDF

기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발 (Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning)

  • 이승민;이우진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.353-360
    • /
    • 2016
  • 여러 개의 태양전지들이 붙어 있는 태양광 패널을 이용하여 전력을 생산하는 태양광 발전은 최근 신재생 에너지 기술로 빠르게 성장하고 있는 분야이다. 하지만 태양광발전의 단점 중 하나인 불규칙한 전력 생산문제로 인해, 장비 및 패널 결함에 빠르게 대응하지 못하는 문제가 발생한다. 이 연구에서는 다양한 기후데이터와 패널 정보를 이용하여 태양광발전량 예측 방법들을 비교하여 최적의 예측 알고리즘을 평가하고 이를 기반으로 태양광발전소 결함 검출 시스템을 개발하여 국내 태양광 발전소에 적용한 사례를 기술한다.

ELM을 이용한 일별 태양광발전량 예측모델 개발 (Development of Daily PV Power Forecasting Models using ELM)

  • 이창성;지평식
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.164-168
    • /
    • 2015
  • Due to the uncertainty of weather, it is difficult to construct an accurate forecasting model for daily PV power generation. It is very important work to know PV power in next day to manage power system. In this paper, correlation analysis between weather and power generation was carried out and daily PV power forecasting models based on Extreme Learning Machine(ELM) was presented. Performance of district ELM model was compared with single ELM model. The proposed method has been tested using actual data set measured in 2014.

데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측 (Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration)

  • 김용민;문승재
    • 플랜트 저널
    • /
    • 제17권4호
    • /
    • pp.41-52
    • /
    • 2021
  • 본 연구에서는 태양광발전 출력 및 모듈온도 값을 기상청 데이터를 이용하여 예측해보고 실측 데이터와 날씨, 일사량, 주변온도, 풍속별로 비교 분석해보았다. 날씨별 예측정확도는 눈이 오거나, 새벽에 해무가 끼는 날의 데이터를 가장 많이 보유한 맑은날의 데이터의 예측정확도가 가장 낮았다. 일사량에 따른 모듈온도와 발전량의 예측정확도는 일사량이 커질수록 정확도가 떨어졌으며, 주변 온도에 따른 예측정확도는 모듈온도는 주변 온도가 커질수록, 발전량은 주변온도가 낮을수록 예측정확도가 떨어졌다. 풍속은 모듈온도와 발전량 모두 풍속이 높아질수록 예측정확도가 감소하였지만, 풍속이 영향 다른 기상조건에 의한 영향보다 미미하여 그 상관관계를 정의하기가 어려웠다.

일기예보를 이용한 일사량 예측기법개발 (Predict Solar Radiation According to Weather Report)

  • 원종민;도근영;허나리
    • 한국항해항만학회지
    • /
    • 제35권5호
    • /
    • pp.387-392
    • /
    • 2011
  • 태양광발전은 독립전원으로써의 가치는 미미하나 도시전체의 탄소발생량 저감 및 화석연료 사용 저감을 위한 분산전원으로써 가치가 매우 높은 전력원이다. 하지만 태양광발전의 경우 기상조건에 따른 발전량 변동이 심하기에 분산전원으로써 효율적으로 사용하기 위해서는 큰 변동폭을 효과적으로 제어하기 위한 실시간 모니터링이 이루어져야 한다. 하지만 태양광발전량을 좌우하는 일사량은 예측치가 존재하지 않기에 이를 예측해야 하고 본 연구에서는 과거의 일사량을 직산분리 하여 구름의 짙은 정도나 두께 등을 유추할 수 있는 대기투과율을 일기예보에서 발표하는 날씨별로 대푯값을 산정하고 이를 일사량 예측식에 대입하여 일사량을 예측하였다. 그리고 실측 일사량 및 CRM(Cloud Cover Radiation Model)기법인 Kasten and Czeplak의 식을 통해 계산된 예측일사량과의 비교를 통해 검증하였다.

기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법 (Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제24권1호
    • /
    • pp.1-16
    • /
    • 2019
  • 최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.