• Title/Summary/Keyword: 태양고도

Search Result 238, Processing Time 0.032 seconds

A Design and Effect of STEAM PBL based on the History of Mathematics (수학사를 활용한 융합적 프로젝트기반학습(STEAM PBL)의 설계 및 효과 분석)

  • Lee, Minhee;Rim, Haemee
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.159-177
    • /
    • 2013
  • This study is a case study of STEAM education. We have developed teaching and learning materials, suggested teaching method, and analysed the result for exploring the potential and effect of STEAM. The content of this study is based on the history of mathematics. Science (S) is related to the 24 divisions of the year, the height of the sun, the movement of heavenly bodies. Technology (T) is related to the exploration with graphic calculators. Engineering (E) is related to design sundial and research on the design principles. Art (A) is related to literature review about mathematical history, the understanding of the value of the mathematics. Mathematics (M) is related to the trigonometric functions. We have considered that Project-Based Learning is proper teaching and learning for STEAM education, we have designed the STEAM PBL and analysed the results focused on the developing integrative knowledge, mathematical attitude including mathematical value, the competencies of 21 century. The result of this study is as follows. We find that STEAM education activates students' collaboration, communication skills and improves representation and critical thinking skills. Also STEAM education makes positive changes of students' mathematical attitudes including the values of the mathematics.

  • PDF

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.

DEVELOPMENT OF A FLUXGATE MAGNETOMETER FOR THE KITSAT-3 SATELLITE (과학위성용 자력계 탑재체 개발에 관한 연구)

  • ;;;;;;Onishi Nobugito
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.312-319
    • /
    • 1997
  • The magnetometer is one of the most important payloads for scientific satellite to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KITSAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.

  • PDF

Effect of Canopy Reforming on Light Penetration into Crop Community and Yielding in Corn (옥수수 초형교정이 군락 투광성 및 수량성에 미치는 영향)

  • 이호진;조명제;이홍석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.76-83
    • /
    • 1985
  • A hypothesis that artificial reforming of corn canopy could improve solar light penetration and dry matter production was tested in corn fields (var. Suwon 19) with three planting densities; low (60 ${\times}$ 40cm), medium (60 ${\times}$ 24cm) and high (60 ${\times}$ 16cm). Natural canopy was found that leaf orientations were even over all azimuth but somewhat inclined toward north-south direction and leaf angle ranged 38$^{\circ}$ to 71$^{\circ}$ from horizontal surface. Reforming corn canopy included following treatments: 1) natural canopy planted in north-south rows (natural canopy), 2)east-west plane canopy planted in north-south rows (E-W canopy), 3)east-west plane canopy and upright leaves in north-south rows, 4)north-south plane canopy (N-S canopy) in east-west rows. After corn plots were installed with training system by supporting poles and connecting wires, corn leaves were induced to a reforming direction and tied on wire. Average light intensity at the mid-point of plant height showed 5-10% increases in E-W canopy and in E-W canopy plus upright leaves, but a 2-10% decrease in N-S canopy from natural canopy. At yellow ripe stage, total dry wt. was increased in E-W canopy but not in N-S canopy. The E-W canopy produced 3-10% more grain yield than natural canopy. Though E-W canopy plus upright leaves yielded less at low density, it yielded up to 10% more at higher density. The N-S canopy yielded similar to low compared with natural canopy. These results suggests that reforming canopy toward solar incident direction increases light penetration into lower canopy, photosynthetic efficiency and grain yield, especially at high planting density in corn.

  • PDF

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Comparative Analysis of Focal Length Bias for Three Different Line Scanners (초점거리 편의가 지상 정확도에 미치는 영향 비교 연구 - 세가지 라인 스캐너를 대상으로 -)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.363-371
    • /
    • 2014
  • Most space-borne optical scanning systems adopt linear arrayconfigurations. The well-knownthree different types of space-borne sensors arealong-track line scanner, across-track linescanner, and three line scanner. To acquire accurate location information of an object on the ground withthose sensors, the exterior and interior orientation parameters are critical factors for both of space-borne and airborne missions. Since the imaging geometry of sensors mightchange time to time due to thermal influence, vibration, and wind, it is very important to analyze the Interior Orientation Parameters (IOP) effects on the ground. The experiments based on synthetic datasets arecarried out while the focal length biases are changing. Also, both high and low altitudes of the imagingsensor were applied. In case with the along-track line scanner, the focal length bias caused errors along the scanline direction. In the other case with the across-track one, the focal length bias caused errors alongthe scan line and vertical directions. Lastly, vertical errors were observed in the case ofthree-line scanner. Those results from this study will be able to provide the guideline for developing new linearsensors, so as for improving the accuracy of laboratory or in-flight sensor calibrations.

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).