• Title/Summary/Keyword: 탑재장치

Search Result 677, Processing Time 0.049 seconds

Ocean Surface Winds Over the Seas Around Korea Measured by the NSCAT(NASA Scatterometer) (NSCAT (NASA Scatterometer)에 의한 한국근해의 해상풍)

  • 이동규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The NSCAT(NASA Scatterometer) carried by the japanese Advanced Earth Observing Satellite(ADEOS) was the first high resolution(25 km) device for the direct wind measurement over the ocean. Even it was ceased to operate in lune of 1977 because of the power failure, it gave the first opportunity to the marine meteorologists to study the direct measured ocean wind during its 9 months of operation, especially around Korea. This study is to show monthly mean ocean wind and wind stress curl fields around Korea from January, 1997 to June, 1997. Mean ocean winds in January are predominantly northwesterly and the strongest wind(12 m/s) is found near Vladivostok. The winds in the western East Sea are strongly inf1uenced by the mountain range in Korea and these topographically influenced winds make about five times larger wind stress curl fields than previous estimates based on the weather maps. The calculation of Sverdrup transport in the East Sea shows the possibility of the directional change of the East Korean Cold Current from southward to northward direction caused by the winter wind. The downwelling area near North Korea has maximum estimated speed of 45 m in january and this wind induced downwelling makes good condition for the formation of Intermediate East Sea Water together with vigorous mixing by the strong wind.

Fall detection based on acceleration sensor attached to wrist using feature data in frequency space (주파수 공간상의 특징 데이터를 활용한 손목에 부착된 가속도 센서 기반의 낙상 감지)

  • Roh, Jeong Hyun;Kim, Jin Heon
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

Patrol Monitoring Plan for Transmission Towers with a Commercial Drone and its Field Tests (상용화 드론을 이용한 송전선로 점검방안 및 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan;Choi, Min-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • Various types of robots running on power transmission lines have been developed for the purpose of line patrol monitoring. They usually have complex mechanism to run and avoid obstacles on the power line, but nevertheless did not show satisfactory performance for going over the obstacles. Moreover, they were so heavy that they could not be easily installed on the lines. To compensate these problems, flying robots have been developed and recently, multi-copter drones with flight stability have been used in the electric power industry. The drones could be remotely controlled by human operators to monitor power distribution lines. In the case of transmission line patrol, however, transmission towers are huge and their spans are very long, and thus, it is very difficult for the pilot to control the patrol drones with the naked eye from a long distance away. This means that the risk of a drone crash onto electric power facilities always resides. In addition, there exists another danger of electromagnetic interference with the drones on autopilot waypoint tracking under ultra-high voltage environments. This paper presents a patrol monitoring plan of autopilot drones for power transmission lines and its field tests. First, the magnetic field effect on an autopilot patrol drone is investigated. Then, how to build the flight path to avoid the magnetic interference is proposed and our autopilot drone system is introduced. Finally, the effectiveness of the proposed patrol plan is confirmed through its field test results in the 154 kV, 345 kV and 765 kV transmission lines in Chungcheongnam-do.

User authentication using touch positions in a touch-screen interface (터치스크린을 이용한 터치 위치기반 사용자 인증)

  • Kim, Jin-Bok;Lee, Mun-Kyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.135-141
    • /
    • 2011
  • Recent advances in mobile devices and development of various mobile applications dealing with private information of users made user authentication in mobile devices a very important issue. This paper presents a new user authentication method based on touch screen interfaces. This method uses for authentication the PIN digits as well as the exact locations the user touches to input these digits. Our method is fully compatible with the regular PIN entry method which uses numeric keypads, and it provides better usability than the behavioral biometric schemes because its PIN registration process is much simpler. According to our experiments, our method guarantees EERs of 12.8%, 8.3%, and 9.3% for 4-digit PINs, 6-digit PINs, and 11-digit cell phone numbers, respectively, under the extremely conservative assumption that all users have the same PIN digits and cell phone numbers. Thus we can guarantee much higher performance in identification functionality by applying this result to a more practical situation where every user uses distinct PIN and sell phone number. Finally, our method is far more secure than the regular PIN entry method, which is verified by our experiments where attackers are required to recover a PIN after observing the PIN entry processes of the regular PIN and our method under the same level of security parameters.

A Study on improvement of communication error between controllers for K56 ammunition transport vehicle (K56 탄약운반장갑차용 제어기 간 통신 오류 개선에 관한 연구)

  • Park, Joo-Young;Kim, Seong-Hoon;Noh, Sang-Wan;Park, Young-Min;Kim, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.781-788
    • /
    • 2021
  • This paper is the study of a design to eliminate the communication error that occurs between the main controller and the servo controller of the K56 ammunition-carrying armored vehicle. The K56 assists in the operation of the K-55A1 self-propelled gun by automating the supply and loading of ammunition. The CAN communication board of the ammunition carrier is a key-function product mounted inside the main controller and installed for communication with the servo controller. It was confirmed that an undefined error would occur intermittently in the existing CAN communication board, interrupting the operation of the ammunition supply system during the loading process. In this paper, in order to solve the problem, the cause of the failure is identified through analysis and a functional test of the communication signal between the main controller and the servo controller. The error was resolved by redesigning and improving the Read/Write algorithm. Finally, the proposed cause analysis and design effectiveness were verified through the CAN communication board single item test and a system equipment application test. It is expected that this study will serve as a reference for improving defense capabilities through improving the reliability of CAN communication boards and by improving the reliability of the overall electronic equipment using DPRAM.

Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet (초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가)

  • Kim, Hyun-Jin;Park, Il-gun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 107 particles mL-1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL-1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.

A Study on the Accuracy Evaluation of UAV Photogrammetry using Oblique and Vertical Images (연직사진과 경사사진을 함께 이용한 UAV 사진측량의 정확도 평가 연구)

  • Cho, Jungmin;Lee, Jongseok;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • As data acquisition using unmanned aerial vehicles is widely used, as one of the ways to increase the accuracy of photogrammetry using unmanned aerial vehicles, a method of inputting both vertical and oblique images in bundle adjustment of aerial triangulation has been proposed. In this study, in order to find a suitable method for increasing the accuracy of photogrammetry, the accuracy of the case of adjusting the oblique images taken at different shooting angles and the case of adjusting the oblique images with different shooting angles at the same time with the vertical images were compared. As a result of the study, it was found that the error of the checkpoint decreases as the angle of the input oblique images increases. In particular, when the vertical images and oblique images are used together, the height error decreases significantly as the angle of the oblique images increases. The current 『Aerial Photogrammetry Work Regulation』 requires RMSE (Root Mean Square Error), which is the same as GSD (Ground Spatial Distance) of a vertical image. When using an oblique images with a shooting angle of 50°, a result close to this standard is obtained. If the vertical images and the 50° oblique images were adjusted at the same time, the work regulations could be satisfied. Using the results of this study, it is expected that photogrammetry using low-cost cameras mounted on unmanned aerial vehicles will become more active.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

Development of the Protocol of the High-Visibility Smart Safety Vest Applying Optical Fiber and Energy Harvesting (광섬유와 압전 에너지 하베스팅을 적용한 고시인성 스마트 안전조끼의 개발)

  • Park, Soon-Ja;Jung, Jun-Young;Moon, Min-Jung
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.25-38
    • /
    • 2021
  • The aim of this study is to protect workers and pedestrians from accidents at night or bad weather by attaching optical fiber to existing safety clothing that is made only with fluorescent fabrics and retroreflective materials. A safety vest was designed and manufactured by applying optical fiber, and energy-harvesting technology was developed. The safety vest was designed to emit light using the automatic flashing of optical fibers attached to the film, and an energy harvester was manufactured and attached to drive the light emission of the optical fiber more continuously. As a result, first, the vest wearer' body was recognized from a distance through the optical fiber and retroreflection, which helped prevent accidents. Thus, this concept helps in saving lives by preventing accidents during night-time work on the roadside or activities of rescue crew and sports activities, or by quickly finding the point of an accident with a signal that changes the optical fiber light emission. Second, to use the wasted energy, a piezoelectric-element power generation system was developed and the piezoelectric-harvesting device was mounted. Potentially, energy was efficiently produced by activating the effective charging amount of the battery part and charging it auxiliary. In the existing safety vest, detecting the person wearing the vest is almost impossible in the absence of ambient light. However, in this study, the wearer could be found within 100 m by the light emission from the safety vest even with no ambient light. Therefore, in this study, we will help in preventing and reducing accidents by developing smart safety clothing using optical fiber and energy harvester attached to save lives.