• Title/Summary/Keyword: 탐지 지표

Search Result 268, Processing Time 0.023 seconds

Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery (LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링)

  • Kim, Mi Kyeong;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Global warming causes sea levels to rise and global changes apparently taking place including coastline changes. Coastline change due to sea level rise is also one of the most significant phenomena affected by global climate change. Accordingly, Coastline change detection can be utilized as an indicator of representing global climate change. Generally, Coastline change has happened mainly because of not only sea level rise but also artificial factor that is reclaimed land development by mud flat reclamation. However, Arctic coastal areas have been experienced serious change mostly due to sea level rise rather than other factors. The purposes of this study are automatic extraction of coastline and identifying change. In this study, in order to extract coastline automatically, contrast of the water and the land was maximized utilizing modified NDWI(Normalized Difference Water Index) and it made automatic extraction of coastline possibile. The imagery converted into modified NDWI were applied image processing techniques in order that appropriate threshold value can be found automatically to separate the water and land. Then the coastline was extracted through edge detection algorithm and changes were detected using extracted coastlines. Without the help of other data, automatic extraction of coastlines using LANDSAT was possible and similarity was found by comparing NLCD data as a reference data. Also, the results of the study area that is permafrost always frozen below $0^{\circ}C$ showed quantitative changes of the coastline and verified that the change was accelerated.

A Study on the quantitative measurement methods of MRTD and prediction of detection distance for Infrared surveillance equipments in military (군용 열영상장비 최소분해가능온도차의 정량적 측정 방법 및 탐지거리 예측에 관한 연구)

  • Jung, Yeong-Tak;Lim, Jae-Seong;Lee, Ji-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.557-564
    • /
    • 2017
  • The purpose of the thermal imaging observation device mounted on the K's tank in the Republic of Korea military is to convert infrared rays into visual information to provide information about the environment under conditions of restricted visibility. Among the various performance indicators of thermal observation devices, such as the view, magnification, resolution, MTF, NETD, and Minimum Resolvable Temperature Difference (MRTD), the MRTD is the most important, because it can indicate both the spatial frequency and temperature resolvable. However, the standard method of measuring the MRTD in NATO contains many subjective factors. As the measurement result can vary depending on subjective factors such as the human eye, metal condition and measurement conditions, the MRTD obtained is not stable. In this study, these qualitative MRTD measurement systems are converted into quantitative indicators based on a gray scale using imaging processing. By converting the average of the gray scale differences of the black and white images into the MRTD, the mean values can be used to determine whether the performance requirements required by the defense specification are met. The (mean) value can also be used to discriminate between detection, recognition and identification and the detectable distance of the thermal equipment can be analyzed under various environmental conditions, such as altostratus, heavy rain and fog.

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8 (Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가)

  • Lee, Mi Hee;Lee, Dalgeun;Yu, Jung Hum;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat satellites are representative optical satellites that have observed the Earth's surface for a long-term, and are suitable for long-term changes such as disaster preparedness/recovery monitoring, land use change, change detection, and time series monitoring. In this paper, clouds and cloud shadows were detected using QA bands to detect and remove clouds simply and efficiently. Then, the missing area of the experimantal image is restorated through the SSG algorithm, which does not directly refer to the pixel value of the reference image, but performs restoration to the pixel value in the Experimental image. Through this study, we presented the possibility of utilizing the modified SSG algorithm by quantitatively and qualitatively evaluating information on variousl and cover conditions in the thermal wavelength band as well as the visible wavelength band observing the surface.

An improved method of NDVI correction through pattern-response low-peak detection on time series (시계열 패턴 반응형 Low-peak 탐지 기법을 통한 NDVI 보정방법 개선)

  • Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • Normalized Difference Vegetation Index (NDVI) is a major indicator for monitoring climate change and detecting vegetation coverage. In order to retrieve NDVI, it is preprocessed using cloud masking and atmospheric correction. However, the preprocessed NDVI still has abnormally low values known as noise which appears in the long-term time series due to rainfall, snow and incomplete cloud masking. An existing method of using polynomial regression has some problems such as overestimation and noise detectability. Thereby, this study suggests a simple method using amoving average approach for correcting NDVI noises using SPOT/VEGETATION S10 Product. The results of the moving average method were compared with those of the polynomial regression. The results showed that the moving average method is better than the former approach in correcting NDVI noise.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Modeling and Simulation for Performance Evaluation of VoIP Spam Detection Mechanism (VoIP 스팸 탐지 기술의 성능 평가를 위한 모델링 및 시물레이션)

  • Kim, Ji-Yeon;Kim, Hyung-Jong;Kim, Myuhng-Joo;Jeong, Jong-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.95-105
    • /
    • 2009
  • Spam call is one of the main security threat in VoIP services. In this paper, we have designed simulation model for performance evaluation of VoIP spam defense mechanism. The simulation model has functions for performance evaluation such as calls generation and input/output comparison. Four representative caller models have been developed for performance evaluation and each model has its own characteristics as statistical parameters. The target mechanism of performance evaluation is SPIT(Spam over Internet Telephony) level decision algorithm, and we have derived SPIT levels of caller models. The performance evaluation model is designed using the DEVS formalism and DEVSJAVA$^{TM}$ is exploited for development and execution of simulation models.

Comparison of Accuracy between Analysis Tree Detection in UAV Aerial Image Analysis and Quadrat Method for Estimating the Number of Treesto be Removed in the Environmental Impact Assessment (환경영향평가의 훼손수목량 추정을 위한 드론영상 분석법과 방형구법의 정확성 비교)

  • Park, Minkyu
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.3
    • /
    • pp.155-163
    • /
    • 2021
  • The number of trees to be removed trees (ART) in the environmental impact assessment is an environmental indicator used in various parts such as greenhouse gas emissions and waste of forest trees calculation. Until now, the ART has depended on the forest tree density of the vegetation survey, and the uncertainty of estimating the amount of removed trees has increased due to the sampling bias. A full-scale survey can be offered as an alternative to improve the accuracy of ART, but the reality is that it is impossible. As an alternative, there is an individual tree detection using aerial image (ITD), and in this study, we compared the ARTs estimated by full-scale survey, sample survey, and ITD. According to the research results, compared to the result of full-scale survey, the result of ITD was overestimated by 25. While 58 were overestimated by the sample survey (average). However, as the sample survey is an estimate based on random samples, ART will be overestimated or underestimated depending on the number and size of quadrats.

Utilizing Mean Teacher Semi-Supervised Learning for Robust Pothole Image Classification

  • Inki Kim;Beomjun Kim;Jeonghwan Gwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.17-28
    • /
    • 2023
  • Potholes that occur on paved roads can have fatal consequences for vehicles traveling at high speeds and may even lead to fatalities. While manual detection of potholes using human labor is commonly used to prevent pothole-related accidents, it is economically and temporally inefficient due to the exposure of workers on the road and the difficulty in predicting potholes in certain categories. Therefore, completely preventing potholes is nearly impossible, and even preventing their formation is limited due to the influence of ground conditions closely related to road environments. Additionally, labeling work guided by experts is required for dataset construction. Thus, in this paper, we utilized the Mean Teacher technique, one of the semi-supervised learning-based knowledge distillation methods, to achieve robust performance in pothole image classification even with limited labeled data. We demonstrated this using performance metrics and GradCAM, showing that when using semi-supervised learning, 15 pre-trained CNN models achieved an average accuracy of 90.41%, with a minimum of 2% and a maximum of 9% performance difference compared to supervised learning.

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.67-77
    • /
    • 2023
  • This study represents an innovative research conducted in the smart farm environment, developing a deep learning-based disease and pest detection model and applying it to the Intelligent Internet of Things (IoT) platform to explore new possibilities in the implementation of digital agricultural environments. The core of the research was the integration of the latest ImageNet models such as Pseudo-Labeling, RegNet, EfficientNet, and preprocessing methods to detect various diseases and pests in complex agricultural environments with high accuracy. To this end, ensemble learning techniques were applied to maximize the accuracy and stability of the model, and the model was evaluated using various performance indicators such as mean Average Precision (mAP), precision, recall, accuracy, and box loss. Additionally, the SHAP framework was utilized to gain a deeper understanding of the model's prediction criteria, making the decision-making process more transparent. This analysis provided significant insights into how the model considers various variables to detect diseases and pests.