• Title/Summary/Keyword: 탐지 정확도

Search Result 1,517, Processing Time 0.029 seconds

An Anomalous Event Detection System based on Information Theory (엔트로피 기반의 이상징후 탐지 시스템)

  • Han, Chan-Kyu;Choi, Hyoung-Kee
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.173-183
    • /
    • 2009
  • We present a real-time monitoring system for detecting anomalous network events using the entropy. The entropy accounts for the effects of disorder in the system. When an abnormal factor arises to agitate the current system the entropy must show an abrupt change. In this paper we deliberately model the Internet to measure the entropy. Packets flowing between these two networks may incur to sustain the current value. In the proposed system we keep track of the value of entropy in time to pinpoint the sudden changes in the value. The time-series data of entropy are transformed into the two-dimensional domains to help visually inspect the activities on the network. We examine the system using network traffic traces containing notorious worms and DoS attacks on the testbed. Furthermore, we compare our proposed system of time series forecasting method, such as EWMA, holt-winters, and PCA in terms of sensitive. The result suggests that our approach be able to detect anomalies with the fairly high accuracy. Our contributions are two folds: (1) highly sensitive detection of anomalies and (2) visualization of network activities to alert anomalies.

Phase Error Decrease Method for Target Direction Detection Improvement (표적 방향 탐지 향상을 위한 위상 오차 감소 방법)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • This paper proposes a method to minimize the target's direction detection error using RADAR. The radar system cannot accurately detect the target direction due to the phase error of he received signal. The proposed method of this study obtains a phase by applying an root mean square to each antenna incident signal, and reduces the phase error by using an optimal signal to noise ratio. In the simulation result, the probability of detecting the target direction is the best when the antenna spacing is half wavelength. The conventional method of direction detection probability 10-1.7 and the proposed method is 10-3.3. The target detection direction of the existing method represents [-8°,8°] with an error of 2 degrees. The target detection direction of the proposed method is shown in [-10°,10°], and all target directions are accurately detected. In the future, There is need for a method to reduce the phase error even though the resolution decrease.

Anomaly Event Detection Algorithm of Single-person Households Fusing Vision, Activity, and LiDAR Sensors

  • Lee, Do-Hyeon;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.23-31
    • /
    • 2022
  • Due to the recent outbreak of COVID-19 and an aging population and an increase in single-person households, the amount of time that household members spend doing various activities at home has increased significantly. In this study, we propose an algorithm for detecting anomalies in members of single-person households, including the elderly, based on the results of human movement and fall detection using an image sensor algorithm through home CCTV, an activity sensor algorithm using an acceleration sensor built into a smartphone, and a 2D LiDAR sensor-based LiDAR sensor algorithm. However, each single sensor-based algorithm has a disadvantage in that it is difficult to detect anomalies in a specific situation due to the limitations of the sensor. Accordingly, rather than using only a single sensor-based algorithm, we developed a fusion method that combines each algorithm to detect anomalies in various situations. We evaluated the performance of algorithms through the data collected by each sensor, and show that even in situations where only one algorithm cannot be used to detect accurate anomaly event through certain scenarios we can complement each other to efficiently detect accurate anomaly event.

Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings (LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.48-56
    • /
    • 2024
  • In the livestock industry, detecting environmental outliers and predicting data are crucial tasks. Outliers in livestock environment data, typically gathered through time-series methods, can signal rapid changes in the environment and potential unexpected epidemics. Prompt detection and response to these outliers are essential to minimize stress in livestock and reduce economic losses for farmers by early detection of epidemic conditions. This study employs two methods to experiment and compare performances in setting thresholds that define outliers in livestock environment data outlier detection. The first method is an outlier detection using Mean Squared Error (MSE), and the second is an outlier detection using a Dynamic Threshold, which analyzes variability against the average value of previous data to identify outliers. The MSE-based method demonstrated a 94.98% accuracy rate, while the Dynamic Threshold method, which uses standard deviation, showed superior performance with 99.66% accuracy.

Detection of Forest Areas using Airborne LIDAR Data (항공 라이다데이터를 이용한 산림영역 탐지)

  • Hwang, Se-Ran;Kim, Seong-Joon;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • LIDAR data are useful for forest applications such as bare-earth DEM generation for forest areas, and estimation of tree height and forest biomass. As a core preprocessing procedure for most forest applications, this study attempts to develop an efficient method to detect forest areas from LIDAR data. First, we suggest three perceptual cues based on multiple return characteristics, height deviation and spatial distribution, being expected as reliable perceptual cues for forest area detection from LIDAR data. We then classify the potential forest areas based on the individual cue and refine them with a bi-morphological process to eliminate falsely detected areas and smoothing the boundaries. The final refined forest areas have been compared with the reference data manually generated with an aerial image. All the methods based on three types of cues show the accuracy of more than 90%. Particularly, the method based on multiple returns is slightly better than other two cues in terms of the simplicity and accuracy. Also, it is shown that the combination of the individual results from each cue can enhance the classification accuracy.

Noise-Robust Porcine Respiratory Diseases Classification Using Texture Analysis and CNN (질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.91-98
    • /
    • 2018
  • Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. In particular, porcine respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this paper, we propose a noise-robust system for the early detection and recognition of pig wasting diseases using sound data. In this method, first we convert one-dimensional sound signals to two-dimensional gray-level images by normalization, and extract texture images by means of dominant neighborhood structure technique. Lastly, the texture features are then used as inputs of convolutional neural networks as an early anomaly detector and a respiratory disease classifier. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (low-cost sound sensor) and accurately (over 96% accuracy) even under noise-environmental conditions, either as a standalone solution or to complement known methods to obtain a more accurate solution.

Azimuth Accuracy of Correlative Interferometer Direction Finder on Airborne Scale-down Model (항공기 축소모델의 상관형 위상비교 방향탐지장치의 방위각 정확도)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.1-6
    • /
    • 2018
  • This paper describes the azimuth accuracy of correlative interferometer direction finder on a scaled down airplane model. When the antennas are placed on the bottom of an airplane, reflection signals caused by an aircraft structure are arise and caused an azimuth error. In this paper, the F-16 fighter scale-down model was made to 5:1, and five antennas were placed on the bottom of the model. The accuracy was made by numerically analyzing the phases of the radio waves received by the five antennas when the signal of emitter was transmitted on $0-360^{\circ}$ azimuth angles. The azimuth error of the correlative interferometer direction finder on the model was measured to be less than $1.0^{\circ}$ when SNR was larger then 3dB, and it could be very useful for the design of the direction finder on airplane.

Correlation Analysis of Dataset Size and Accuracy of the CNN-based Malware Detection Algorithm (CNN Mobile Net 기반 악성코드 탐지 모델에서의 학습 데이터 크기와 검출 정확도의 상관관계 분석)

  • Choi, Dong Jun;Lee, Jae Woo
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.

A Comparative Study on Machine Learning Models for Red Tide Detection (적조 탐지를 위한 기계학습 모델 비교 연구)

  • Park, Mi-So;Kim, Na-Kyeong;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1363-1372
    • /
    • 2021
  • Red tide, defined as the major reproduction of harmful birds, has the characteristics of being generated and diffused in a wide area. This has limitations in detection only with the existing investigation method. Therefore, in this study, red tide was detected using a remote sensing technique. In addition, it was intended to increase the accuracy of detection by using optical characteristics, not just the concentration of chlorophyll. Red tide mainly occurs on the southern coast where sea signals are complex, and the main red tide control species on the southern coast is Cochlodinium polykirkoides. Therefore, it was intended to secure objectivity by reflecting features that could not be found depending on the researcher's observation and experience, not limited to visual judgment using machine learning techniques. In this study, support background machines and random forest were used among machine learning models, and as a result of calculating accuracy as performance evaluation indicators of the two models, the accuracy was 85.7% and 80.2%, respectively.

Depth-based Pig Detection at Wall-Floor Junction (깊이 정보를 이용한 벽과 바닥 경계에서의 돼지 탐지)

  • Kim, J.;Kim, J.;Choi, Y.;Chung, Y.;Park, D.;Kim, H.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.955-957
    • /
    • 2017
  • 감시 카메라 환경에서 돈사 내 돼지들을 탐지 및 추적에 관한 연구는 효율적인 돈사 관리측면에서 중요한 이슈로 떠오르고 있다. 그러나 깊이 정보 내 노이즈와 돈방 내 돼지와 배경의 깊이 정보 값이 유사하여 개별 돼지만을 탐지하기란 쉽지 않다. 특히 천장에 설치된 센서로부터 획득된 벽과 바닥 경계에 위치한 돼지를 탐지하기 위한 방법이 요구된다. 본 논문에서는 노이즈에 덜 민감한 바닥 배경을 이용하여 바닥에 위치한 돼지의 부분을 먼저 탐지한 후, 벽에 위치한 돼지의 나머지 부분을 수퍼픽셀과 영역확장 기법으로 탐지하는 방법을 제안한다. 실험 결과 돈방 내 벽과 바닥 경계에 위치한 돼지를 정확히 탐지하였으며, 영상 1장 당 수행시간이 5msec로 실시간 처리에 문제가 없음을 확인하였다.