• Title/Summary/Keyword: 탐지 정확도

Search Result 1,517, Processing Time 0.032 seconds

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

A Study on Direction Finding Accuracy Analysis for Airborne ESM (항공용 전자전장비의 방향탐지 정확도 분석기법)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.63-73
    • /
    • 2008
  • The helicopter position, heading data and the direction finding data of ESM are essentially required to compensate the parallax and analyze the direction finding accuracy of heliborne ESM in flight test phase. In the case of the long test range compared with small platform like as LYNX helicopter and Jisim Island test site, the parallax compensation for direction finding accuracy calculation and GPS position error can be neglected. In this paper, the direction finding accuracy on the basis of helicopter propeller was calculated by coordinate changing between helicopter and transmitting antenna from WGS84 coordinate to navigation coordinate using helicopter position and direction finding data.

A Detection Model using Labeling based on Inference and Unsupervised Learning Method (추론 및 비교사학습 기법 기반 레이블링을 적용한 탐지 모델)

  • Hong, Sung-Sam;Kim, Dong-Wook;Kim, Byungik;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • The Detection Model is the model to find the result of a certain purpose using artificial intelligent, data mining, intelligent algorithms In Cyber Security, it usually uses to detect intrusion, malwares, cyber incident, and attacks etc. There are an amount of unlabeled data that are collected in a real environment such as security data. Since the most of data are not defined the class labels, it is difficult to know type of data. Therefore, the label determination process is required to detect and analysis with accuracy. In this paper, we proposed a KDFL(K-means and D-S Fusion based Labeling) method using D-S inference and k-means(unsupervised) algorithms to decide label of data records by fusion, and a detection model architecture using a proposed labeling method. A proposed method has shown better performance on detection rate, accuracy, F1-measure index than other methods. In addition, since it has shown the improved results in error rate, we have verified good performance of our proposed method.

IDS Model using Improved Bayesian Network to improve the Intrusion Detection Rate (베이지안 네트워크 개선을 통한 탐지율 향상의 IDS 모델)

  • Choi, Bomin;Lee, Jungsik;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • In recent days, a study of the intrusion detection system collecting and analyzing network data, packet or logs, has been actively performed to response the network threats in computer security fields. In particular, Bayesian network has advantage of the inference functionality which can infer with only some of provided data, so studies of the intrusion system based on Bayesian network have been conducted in the prior. However, there were some limitations to calculate high detection performance because it didn't consider the problems as like complexity of the relation among network packets or continuos input data processing. Therefore, in this paper we proposed two methodologies based on K-menas clustering to improve detection rate by reforming the problems of prior models. At first, it can be improved by sophisticatedly setting interval range of nodes based on K-means clustering. And for the second, it can be improved by calculating robust CPT through applying weighted-leaning based on K-means clustering, too. We conducted the experiments to prove performance of our proposed methodologies by comparing K_WTAN_EM applied to proposed two methodologies with prior models. As the results of experiment, the detection rate of proposed model is higher about 7.78% than existing NBN(Naive Bayesian Network) IDS model, and is higher about 5.24% than TAN(Tree Augmented Bayesian Network) IDS mode and then we could prove excellence our proposing ideas.

Detection of an Open-Source Software Module based on Function-level Features (함수 수준 특징정보 기반의 오픈소스 소프트웨어 모듈 탐지)

  • Kim, Dongjin;Cho, Seong-je
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.713-722
    • /
    • 2015
  • As open-source software (OSS) becomes more widely used, many users breach the terms in the license agreement of OSS, or reuse a vulnerable OSS module. Therefore, a technique needs to be developed for investigating if a binary program includes an OSS module. In this paper, we propose an efficient technique to detect a particular OSS module in an executable program using its function-level features. The conventional methods are inappropriate for determining whether a module is contained in a specific program because they usually measure the similarity between whole programs. Our technique determines whether an executable program contains a certain OSS module by extracting features such as its function-level instructions, control flow graph, and the structural attributes of a function from both the program and the module, and comparing the similarity of features. In order to demonstrate the efficiency of the proposed technique, we evaluate it in terms of the size of features, detection accuracy, execution overhead, and resilience to compiler optimizations.

Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array (L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발)

  • Jung, Hwee-Kwon;Lee, Myung-Jun;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.369-376
    • /
    • 2014
  • This paper presents a method that integrates passive and active-sensing techniques for the structural health monitoring of plate-like structures. Three piezoelectric transducers are deployed in a L-shape to detect and locate an impact event by measuring and processing the acoustic emission data. The same sensor arrays are used to estimate the subsequent structural damage using guided waves. Because this method does not require a prior knowledge of the structural parameters, such as the wave velocity profile in various directions, accurate results could be achieved even on anisotropic or curved plates. A series of experiments was performed on plates, including a spar-wing structure, to demonstrate the capability of the proposed method. The performance was also compared to that of traditional approaches and the superior capability of the proposed method was experimentally demonstrated.

Real Time Pothole Detection System based on Video Data for Automatic Maintenance of Road Surface Distress (도로의 파손 상태를 자동관리하기 위한 동영상 기반 실시간 포트홀 탐지 시스템)

  • Jo, Youngtae;Ryu, Seungki
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • Potholes are caused by the presence of water in the underlying soil structure, which weakens the road pavement by expansion and contraction of water at freezing and thawing temperatures. Recently, automatic pothole detection systems have been studied, such as vibration-based methods and laser scanning methods. However, the vibration-based methods have low detection accuracy and limited detection area. Moreover, the costs for laser scanning-based methods are significantly high. Thus, in this paper, we propose a new pothole detection system using a commercial black-box camera. Normally, the computing power of a commercial black-box camera is limited. Thus, the pothole detection algorithm should be designed to work with the embedded computing environment of a black-box camera. The designed pothole detection algorithm has been tested by implementing in a black-box camera. The experimental results are analyzed with specific evaluation metrics, such as sensitivity and precision. Our studies confirm that the proposed pothole detection system can be utilized to gather pothole information in real-time.

Fraud Detection System in Mobile Payment Service Using Data Mining (모바일 결제 환경에서의 데이터마이닝을 이용한 이상거래 탐지 시스템)

  • Han, Hee Chan;Kim, Hana;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1527-1537
    • /
    • 2016
  • As increasing of smartphone penetration over the world, various mobile payment services have been emerged and fraud transactions have drastically increased. Although many financial companies have deployed security solutions to detect fraud transactions in on/off-line environment, mobile payment services still lack fraud detection solutions and researches. The mobile payment is mainly comprised of micro-payments and payment environment is different from other payments, so mobile-specialized fraud detection is needed. In this paper, we propose a FDS (Fraud Detection System) based on data mining for mobile payment services. The method of this paper is applied to the real data provided by a PG (Payment Gateway) company in Korea. The proposed FDS consists of two phases; (1) the first phase is focused on classifying transactions at high speed (2) the second is designed to detect abnormal transactions with high accuracy. We could detect 13 transactions per second with 93% accuracy rate.

Design of Anomaly Detection System Based on Big Data in Internet of Things (빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계)

  • Na, Sung Il;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.377-383
    • /
    • 2018
  • Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.