본 논문에서는 탐지 모델을 자동 생성하여 인력, 시간에서의 효율성과 오탐율을 향상시키는 학습을 통한 탐지 모델 생성 시스템을 제안한다. 제안된 탐지 모델 생성 시스템은 agent 시스템과 manager 시스템으로 구성되고 agent 시스템은 탐지 모델 데이터베이스를 기반으로 센서의 역활을 수행하고 manager 시스템에서는 탐지 모델 생성과 모델 분산의 역할을 수행한다. 모델 생성은 유전적 알고리즘에 의해 기존의 정형화된 포맷의 탐지 모델을 학습시켜 모델을 생성하고 새로운 탐지 모델로 적용할 수 있다. 실험 결과에 따라 제안된 데이터 마이닝 기반의 탐지 모델 생성 시스템은 기존의 침입 탐지 시스템보다 효율적으로 침입을 탐지하였다. 구현된 시스템으로 인하여 새로운 유형의 침입 시 탐지 모델 생성과, False-Positive율의 감소를 가져와 기존 침입 탐지 시스템의 성능을 개선하여 탐지모델 생성 시스템을 제안한다.
본 논문은 입력 영상들로부터 추적이나 탐지의 대상이 되는 모델을 학습에 의해 생성하는 방법에 대해 기술한다. 일반적으로 탐지나 검출 시스템을 구성할 경우, 사용되는 대상 모델은 초기에 인위적으로 주어지게 된다. 이 경우 시스템이 동작하는 주위의 환경이 변하게 되면, 그에 맞게 새로운 대상 모델이 다시 주어져야 하는 단점이 있다. 또한 탐지 시스템 개발에 있어서 일반적인 문제점은 탐지 대상이 가려지거나 겹칠 경우 인식 성공률이 크게 떨어진다는 것이다. 본 논문에서는 사람 탐지 시스템의 일반적인 문제점들에 대응하고 탐지의 성능을 높이기 위하여 최소한의 제약 조건만이 미리 주어지고 실제 탐지 대상의 모델은 입력 영상으로부터 학습을 통해 구성 요소별로 생성하는 방법에 대해 기술한다.
본 논문은 입력 영상들로부터 탐지의 대상이 되는 모델을 학습에 의해 생성하는 방법에 대해 기술한다. 일반적으로 탐지 시스템을 구성할 경우, 사용되는 대상 모델은 초기에 인위적으로 주어지게 된다. 이 경우 시스템이 동작하는 주위의 환경이 변하게 되면, 그에 맞게 새로운 대상 모델이 다시 주어져야 하는 단점이 있다. 또한 탐지 시스템 개발에 있어서 일반적인 문제점은 탐지 대상이 가려지거나 겹칠 경우 인식 성공률이 크게 떨어진다는 것이다. 본 논문에서는 사람 탐지 시스템의 일반적인 문제점들에 대응하고 탐지의 성능을 높이기 위하여 최소한의 제약 조건만이 미리 주어지고 실제 탐지 대상의 모델은 입력 영상으로부터의 학습을 통해 구성 요소별로 생성하는 방법에 대해 기술한다. 제안된 모델 학습 방법은 사람 탐지 시스템에 적용되어 그 성능이 평가되어진다.
본 논문에서는 가짜뉴스 탐지 모델에 워드 임베딩 기법을 접목하여 성능을 향상시키는 방법을 제안한다. 기존의 한국어 가짜뉴스 탐지 연구는 희소 표현인 빈도-역문서 빈도(TF-IDF)를 활용한 탐지 모델들이 주를 이루었다. 하지만 이는 가짜뉴스 탐지의 관점에서 뉴스의 언어적 특성을 파악하는 데 한계가 존재하는데, 특히 문맥에서 드러나는 언어적 특성을 구조적으로 반영하지 못한다. 이에 밀집 표현 기반의 워드 임베딩 기법인 Word2vec을 활용한 텍스트 전처리를 통해 문맥 정보까지 반영한 가짜뉴스 탐지 모델을 본 연구의 제안 모델로 생성한 후 TF-IDF 기반의 가짜뉴스 탐지 모델을 비교 모델로 생성하여 두 모델 간의 비교를 통한 성능 검증을 수행하였다. 그 결과 Word2vec 기반의 제안모형이 더욱 우수하였음을 확인하였다.
기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.
네트워크 기반의 공격 및 비정상 행위를 정확히 탐지하고 판단하기 위한 기존의 탐지 모델은 공격 룰셋의 패턴매칭 기반인 Misuse Detection System을 사용하고 있다. 그러나 이 시스템의 특성상 새로운 공격의 미탐지 및 공격 오인등으로 False Positive 가 높다는 단점이 있다. 본 논문은 전체 시스템의 성능을 판정하는 False Positve 에러율을 줄여 성능을 향상하기 위해 Meachine Learning기반의 Anomaly Detection System 을 결합한 새로운 탐지 모델을 제안하고자 한다. Anomaly Detection System 은 정상행위에 대한 비교적 높은 탐지율과 새로운 공격에 대한 탐지가 용이하다. 본 논문에서는 각 시스템의 탐지모델로 Snort 와 인스턴스 기반의 알고리즘인 IBL 을 사용했으며, 결합모델의 타당성을 검증하기 위해서 각 탐지 모델의 False Positive와 False Negative 에러율을 측정하였다.
DGA(Domain Generation Algorithms)로 생성된 도메인을 탐지하기 위한 다양한 연구 결과가 선행되었다. 기존 연구 상에서는 딥러닝 모델인 LSTM을 이용한 DGA 도메인 탐지가 가장 효과적인 방법으로 대두되었다. 하지만 본 논문 실험 결과, TCN 모델을 이용한 탐지 결과가 LSTM 모델보다 우수한 탐지 정확도를 나타내는 것을 확인하였다. 또한, 탐지 모델을 대규모 도메인 처리가 필요한 현업에서 사용될 것을 고려하여, LSTM과 TCN 모델보다 빠른 결과를 도출할 수 있는 XGBoost 모델을 확인하였다. TCN과 XGBoost 모델을 활용하여 현업에서 DGA 도메인을 탐지하는데 효과적으로 사용될 수 있을 것이다.
본 논문은 불법 침입 탐지를 위한 정보시스템 구축에 있어 많은 연구가 진행되고 있는 침입 탐지 시스템(IDS: Intrusion Detection System)중 네트워크 기반의 오용(Misuse) 탐지 모델을 이용하여 침입 탐지 시스템을 설계 및 구현하였다. 구현된 침입 탐지 시스템은 K4 인증 기준을 모델로 삼았으며, 탐지하는 시그너쳐의 분류상 Content, DoS, Probing을 대상으로 설계되었으며, 원격으로 시스템의 관리와 감독이 가능하도록 구현하였다.
스타일 변환 모델은 이미지 전체나 이미지 내에서 사용자가 지정한 영역을 대상으로 스타일을 변환시킨다. 이런 방식은 이미지 내의 다수의 객체에 대해 스타일 변환을 시행할 때 일일이 영역을 지정해 줘야 한다는 불편함과 결과물의 전체 해상도가 떨어진다는 한계를 가지고 있다. 본 논문에서는 이런 한계들을 극복하기 위해 객체탐지 모델과 스타일변환 모델을 연동한 객체스타일변환모델을 제안하고 모델 간 연동방법에 대해 자세히 서술한다. 객체탐지모델인 Mask R-CNN 을 통해 필요한 객체를 탐지하고 탐지한 객체의 특징맵들을 스타일변환 모델인 zi2zi 의 입력 값으로 전달하여 이미지 내의 필요한 객체들만 스타일변환이 이루어지도록 모델이 동작한다. 이러한 모델은 기존에 있는 두 모델을 재사용함으로써 모델을 처음부터 새로 설계할 필요가 없다는 장점이 있으며, 공개된 다양한 모델들을 서로 융합하여 사용할 수 있는 방법을 제시하는데 도움을 줄 것이다.
최근에 분산 시스템과 같이 이기종의 컴퓨팅 환경을 효율적으로 통합하는 방법에 관한 다양한 연구가 진행되고 있다. 네트워크 보안에서는 각 보안 시스템들이 효율적인 침입탐지와 차단을 위해서 분산화되고 있으며 분산된 보안 시스템들을 조정하고 통합하기 위해서 분산인공지능(Distributed Artificial Intelligence)의 개념을 도입하고 있다. 본 논문에서는 분산침입탐지 시스템(Distributed Intrusion Detection System)과 침입차단 시스템(firewall)이 계약망 프로토콜(Contract Net Protocol)에 의해 상호 연동하여 외부 네트워크에서 유입된 패킷의 정보를 통해 침입을 탐지하고 차단하는 네트워크 보안 모델을 설계하였다. 본 연구진이 구성하고 있는 시뮬레이션 환경에서는 네트워크에 존재하는 다양한 보안 모델들을 계층적으로 구성하기 위해 DEVS 방법론을 사용하였다. 보안 시스템의 연동은 계약망 프로토콜에 의해 이루어지는데 네트워크에 분산되어 있는 각각의 전문성을 가진 침입탐지 에이전트들이 중앙 콘솔에 비드(bid)글 제출하고 중앙 콘솔은 최상의 비드를 제출한 에이전트를 선택하여 침입을 탐지하게 된다. 그리고 탐지된 정보를 참조하여 침입차단 시스템은 능동적으로 침입을 차단하게 된다. 이와 같은 모델의 설계를 통해서 기존의 침입탐지 시스템들이 탐지하지 못한 침임을 탐지하게 되고 보안시스템에서의 오류발생빈도를 감소시키며 탐지의 속도를 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.