• Title/Summary/Keyword: 탐지성능 분석

Search Result 857, Processing Time 0.027 seconds

Implementation and Analysis of Digital Signal Processing System for Intruder Detection using the Variations of the Optical Speckle Patterns (광 스페클 패턴 변화를 이용한 침입자 탐지용 디지털 신호처리 시스템 구현 및 성능 분석)

  • 김인수;강진석;김기만
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.360-367
    • /
    • 2004
  • In this paper, we have implemented the digital signal processing system for intruder detection using speckle pattern variation in multi-me optical fiber with hypersensitive and high fidelity. The performance of the implemented system was evaluated by experiments. In order to improve the system performances we applied the adaptive digital filter. In experimental results we could see 96 % intruder detection and 90 % man/car discrimination probability.

Analysis and Performance enhancement of angle-based outlier detection (각도 기반 이상치 탐지 방법의 분석과 성능 개선)

  • Sin, Yong-Joon;Park, Cheong-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.452-457
    • /
    • 2010
  • 고차원 공간에서 효과적인 이상치 탐지 방법으로 제안되었던 각도 기반 이상치 탐지(Angle Based Outlier Detection)는 객체와 객체를 비교하는 척도로 각도 개념을 사용하여 고차원 공간에서도 일반적인 거리기반 이상치 측정 방법보다 좋은 이상치 탐지 성능을 가진다. 그러나 어떤 이상치가 다른 이상치에 의해 둘러싸인 경우 정상객체와 구분하기 어렵다는 문제가 있다. 이 논문에서는 기존의 이상치 탐지 방법을 개선한 방법을 제안하고 실험을 통하여 기존의 방법과 제안한 새로운 방법을 비교하여 향상된 성능을 입증한다.

  • PDF

A Study on the Intrusion Detection System Using Internal Sensors (내부 센서를 이용한 침입 탐지 시스템에 관한 연구)

  • 장정숙;전용희
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.161-165
    • /
    • 2001
  • 효율적인 네트워크의 보호를 위해 네트워크를 경유한 공격에 대하여 알려진 공격과 새로운 공격에 대한 빠른 탐지와 적절한 대응을 할 수 있는 침입 탐지 시스템(Intrusion Detection System: IDS)에 대하여 최근 관심이 증대되고 있다. 기존의 침입 탐지 시스템들은 다양한 침입에 대한 능동적인 탐지에 어려움이 있다. 본 논문에서는 기존의 침입 탐지 시스템이 가지고 있는, 성능(fidelity) 문제, 자원 사용 문제 및 신뢰성 문제를 해결하기 위하여, 호스트에서 내부 센서를 사용하는 메커니즘에 대하여 고찰하고 분석한다. 그리고 침입 탐지 프레임워크를 구축하기 위한 내부 센서의 개념, 특징 및 능력에 대하여 기술한다.

  • PDF

Quality Evaluation Model for Intrusion Detection System based on Security and Performance (보안성과 성능에 따른 침입탐지시스템의 품질평가 모델)

  • Lee, Ha-Young;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.289-295
    • /
    • 2014
  • Intrusion detection system is a means of security that detects abnormal use and illegal intension in advance in real time and reenforce the security of enterprises. Performance of intrusion detection system is judged by information collection, intrusion analysis, intrusion response, review and protection of intrusion detection result, reaction, loss protection that belong to the area of intrusion detection. In this paper, we developed a evaluation model based on the requirements of intrusion detection system and ISO international standard about software product evaluation.

A Comparison of Deep Neural Network based Scene Text Detection with YOLO and EAST (이미지 속 문자열 탐지에 대한 YOLO와 EAST 신경망의 성능 비교)

  • Park, Chan-Yong;Lee, Gyu-Hyun;Lim, Young-Min;Jeong, Seung-Dae;Cho, Young-Heuk;Kim, Jin-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.422-425
    • /
    • 2021
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 v3 이전 모델까지는 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하고 향후 문자 인식 분야에서 많이 활용될 것으로 기대된다.

Research on Improving Fire Detection Artificial Intelligence Model Performance (화재 탐지 인공지능 모델 성능 개선 연구)

  • Lee, Jeong-Rok;Lee, Dae-Woong;Jeong, Sae-Hyun;Jung, Sang
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.202-203
    • /
    • 2023
  • 최근 화재 탐지 분야는 불꽃 연기의 특징과 인공지능 인식(Detection) 모델을 활용하여 탐지율을 높이려는 연구가 많이 진행되어 왔다. 기존 화재 탐지 정확도를 높이기 위한 모델 연구 이외에도 불꽃·연기의 특징을 다양한 방법으로 데이터 가공한 학습 데이터셋을 활용하는 연구들이 진행되고 있다. 본 논문에서는 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안한다. 제안한 모델은 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하였다. 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다.

  • PDF

YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model (YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교)

  • Park, Chan Yong;Lim, Young Min;Jeong, Seung Dae;Cho, Young Heuk;Lee, Byeong Chul;Lee, Gyu Hyun;Kim, Jin Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.115-124
    • /
    • 2022
  • In this paper, YOLO and EAST models are tested to analyze their performance in text area detecting for real-world and normal text images. The earl ier YOLO models which include YOLOv3 have been known to underperform in detecting text areas for given images, but the recently released YOLOv4 and YOLOv5 achieved promising performances to detect text area included in various images. Experimental results show that both of YOLO v4 and v5 models are expected to be widely used for text detection in the filed of scene text recognition in the future.

DEVS-Based Simulation Model Development for Composite Warfare Analysis of Naval Warship (함정의 복합전 효과도 분석을 위한 DEVS 기반 시뮬레이션 모델 개발)

  • Mi Jang;Hee-Mun Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.41-58
    • /
    • 2023
  • As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.

The Statistical Performance Analysis of Satellite Tracking Algorithm for Mobile TT&C (이동위성 관제용 위성 위치 탐지 알고리즘의 통계적 성능 분석)

  • Lee, Yun-Soo;Lee, Byung-Seub;Chung, Won-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1352-1358
    • /
    • 2007
  • This paper address the statistical charateristics of MUSIC algorithm which is suggested as satellite direction finding algorithm. If the MUSIC algorithm is adopted as a satellite direction detection method in mobile TT&C system, then the statistical performance of the MUSIC algorithm will be closely related with the overall performance of the system. So statistical characteristics of the parameter in the respect of SNR and data length are addressed and then analyse the final effects to the satellite direction finding.

DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features (악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델)

  • Dae-yeob Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.881-891
    • /
    • 2023
  • Recently, various studies on malicious URL detection using artificial intelligence have been conducted, and most of the research have shown great detection performance. However, not only does classical machine learning require a process of analyzing features, but the detection performance of a trained model also depends on the data analyst's ability. In this paper, we propose a DL-ML Fusion Hybrid Model for malicious web site URL detection based on URL lexical features. the propose model combines the automatic feature extraction layer of deep learning and classical machine learning to improve the feature engineering issue. 60,000 malicious and normal URLs were collected for the experiment and the results showed 23.98%p performance improvement in maximum. In addition, it was possible to train a model in an efficient way with the automation of feature engineering.