악성코드 탐지기술에 대한 연구는 최근에도 지속적으로 진행되고 있다. 특히, 에뮬레이터나 가상머신을 이용한 악성행위 탐지기술은 사용자 시스템에 악영향을 미치지 않는 독립적인 공간에서 코드의 실행이 가능하며, 빠른 초기화가 가능하다는 장점으로 인해 최근에 이슈가 되고 있다. 본 논문에서는 최근의 에뮬레이터나 가상머신을 이용한 악성행위 탐지기술의 연구동향을 분석하고, 관련 기술의 발전방향을 제시하고자 한다.
컴퓨터망의 확대 및 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있다. 이에 따라 침입자들로부터 침입을 줄이기 위한 침입탐지시스템에 대한 요구가 증가되고 있다. 이에 본 논문에서는 침입탐지시스템의 기술적 구성요소 및 일반적인 요구사항과 침입탐지시스템의 분류방법, 그리고 대표적인 침입탐지기술에 대하여 살펴보고, 현재 국외에서 개발된 침입탐지시스템들을 데이터소스와 침입모델을 기반으로 분석하며, 국외 침입탐지시스템 현황과 국내 정보보호 산업에서 침입탐지시스템의 위상을 살펴본 후, 침입탐지시스템에 대한 연구 필요성에 대해 논한다.
C/C++에는 다수의 메모리 취약점이 존재하며 ASan은 낮은 오버헤드와 높은 탐지율로 이러한 메모리 취약점을 탐지하기 위해 광범위하게 사용되고 있다. 그러나 상용 프로그램 중 다수는 메모리를 효율적으로 사용하기 위해 Custom Memory Allocator(CMA)를 구현하여 사용하며, ASan은 이러한 CMA로부터 파생된 버그를 대부분 탐지하지 못한다. 이를 극복하기 위해 본 연구에서는 LLVM IR 코드를 RNN 신경망에 학습하여 CMA를 탐지하고, ASan이 CMA를 식별할 수 있도록 수정하여 CMA로부터 파생된 메모리 취약점을 탐지할 수 있는 도구인 CMASan을 제안한다. ASan과 CMASan의 성능 및 CMA 관련 취약점의 탐지 결과를 비교·분석하여 CMASan이 낮은 실행시간 및 적은 메모리 오버헤드로 ASan이 탐지하지 못하는 메모리 취약점을 탐지할 수 있음을 확인하였다.
With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.254-257
/
2024
5G 통신과 인공지능 기술이 발전하고, 사물인터넷 기기의 수가 증가함에 따라 종래의 정보보호체계를 우회하는 지능적인 사이버 공격이 증가하고 있다. 그러나, 종래의 기계학습 기반 멀웨어 탐지 방식은 이미 알려진 멀웨어만 탐지할 수 있으며, 새로운 멀웨어는 탐지가 어렵거나, 기존의 알려진 멀웨어로 잘못 분류되는 문제가 있다. 본 연구에서는 비지도학습을 사용하여 알려지지 않은 멀웨어를 탐지하고, 새롭게 탐지된 멀웨어를 새로운 라벨로 분류하여 재학습하는 준지도 학습 기반의 멀웨어 탐지 기법을 제안한다. 다양한 데이터 환경에서 알려지지 않은 멀웨어 데이터가 탐지 모델로 입력될 때 제안한 방식의 성능을 평가했다. 실험 결과에 따르면 제안한 준지도 학습 기반의 멀웨어 탐지 방법은 종래의 방식 대비 정확도를 약 16% 개선했다.
사물인터넷 환경은 무수히 많은 이기종의 기기가 연결되는 초연결 네트워크 구성을 갖는 특성이 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안 기술로 네트워크를 통해 침입하는 위협의 효율적인 탐지 기술을 제안한다. 사물인터넷 환경에서의 대표적인 위협 행위를 분석하고 관련하여 공격 데이터를 수집하고 이를 토대로 특성 연구를 진행하였다. 이를 기반으로 인공신경망 기반의 오토인코더 알고리즘을 활용하여 심층학습 탐지 모델을 구축하였다. 본 논문에서 제안하는 탐지 모델은 비지도 학습 방식의 오토인코더를 지도학습 기반의 분류기로 확장하여 사물인터넷 환경에서의 대표적인 위협 유형을 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련연구를 통하여 머신러닝 기술과 위협 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 위협 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.
단일 센서 기반의 표적 탐지 문제에서 센서의 한계 요소에 의해 탐지 성능이 제한된다. 따라서, 최근 단일 센서 기반의 표적 탐지 성능을 향상시키기 위한 방안으로 각 센서의 강점을 효과적으로 융합하는 다중 센서 정보 융합 기반의 표적 탐지 기법에 대한 연구가 활발히 진행되고 있다. 센서 정보 융합을 위해서는 각 센서별 영상 획득, 각 영상의 기하학적 정합, 센서 정보 융합 기반의 표적 탐지 기술이 필요하며, 본 논문에서는 이에 대한 기술 및 개발 동향을 소개한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.346-348
/
2001
본 논문은 입력 영상들로부터 추적이나 탐지의 대상이 되는 모델을 학습에 의해 생성하는 방법에 대해 기술한다. 일반적으로 탐지나 검출 시스템을 구성할 경우, 사용되는 대상 모델은 초기에 인위적으로 주어지게 된다. 이 경우 시스템이 동작하는 주위의 환경이 변하게 되면, 그에 맞게 새로운 대상 모델이 다시 주어져야 하는 단점이 있다. 또한 탐지 시스템 개발에 있어서 일반적인 문제점은 탐지 대상이 가려지거나 겹칠 경우 인식 성공률이 크게 떨어진다는 것이다. 본 논문에서는 사람 탐지 시스템의 일반적인 문제점들에 대응하고 탐지의 성능을 높이기 위하여 최소한의 제약 조건만이 미리 주어지고 실제 탐지 대상의 모델은 입력 영상으로부터 학습을 통해 구성 요소별로 생성하는 방법에 대해 기술한다.
Park, Jong-Youl;Lee, Dong-Ik;Yoon, Seok-Hwan;Park, Joong-Gil
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.833-836
/
2000
지금까지 침입탐지시스템은 침입행위를 어떻게 판단할 것인가 하는 부분에 많은 연구가 진행되었다. 고속 네트워크과 다양한 사용자의 요구는 침입탐지시스템이 더 많은 데이터의 처리를 요구하게 되었고, 많은 크래커들에 의해서 더욱 새롭고 다양한 침입방법이 소개되었다. 침입탐지시스템은 새로운 침입 방법과 더 많은 데이터를 실시간으로 처리하기 위해서는 고성능의 그리고 지능형의 데이터 처리 기술이 절실하다. 본 논문은 실시간 데이터 처리와 새로운 침입 방법에 대해서 능동적인 대처를 위해서 멀티 에이전트 기반의 분산 침입탐지기술과 데이터 중심의 비정상행위 탐지 기술인 커널 기반의 침입탐지기술의 혼합형 침입탐지시스템을 제안한다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06d
/
pp.84-87
/
1998
소음원 탐지는 환경 소음제어, 음향 표적 탐지 및 음성 통신 등의 광범한 분야에 적용되는 연구분야로 Beamforming 기술, 상관함수법, 음향인테시티법등 다양한 기술이 적용되는 분야이다. 본 연구에서는 최근 그 응용 범위가 증대고고 있는 Matched Filterig 기술을 이용한 소음원 탐지기술의 수치 해석 결과로 종래 연구가 현상적인 특성의 1차적 응용이라면 본 연구는Matched filtering 의 공간 분해능 특성을 해석한 것으로 배열 중심선과 소음원이 이루는 경사각에 따른 분해능 특성을 중심으로 논의되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.