• Title/Summary/Keyword: 탐지기술

Search Result 2,607, Processing Time 0.031 seconds

가상환경을 이용한 악성코드 탐지기술

  • Seo, Jung-Taek
    • Review of KIISC
    • /
    • v.17 no.4
    • /
    • pp.74-82
    • /
    • 2007
  • 악성코드 탐지기술에 대한 연구는 최근에도 지속적으로 진행되고 있다. 특히, 에뮬레이터나 가상머신을 이용한 악성행위 탐지기술은 사용자 시스템에 악영향을 미치지 않는 독립적인 공간에서 코드의 실행이 가능하며, 빠른 초기화가 가능하다는 장점으로 인해 최근에 이슈가 되고 있다. 본 논문에서는 최근의 에뮬레이터나 가상머신을 이용한 악성행위 탐지기술의 연구동향을 분석하고, 관련 기술의 발전방향을 제시하고자 한다.

침입탐지 기술 동향

  • 이종성;채수환;박종서;지승도;이종근;이장세
    • Information and Communications Magazine
    • /
    • v.16 no.11
    • /
    • pp.46-63
    • /
    • 1999
  • 컴퓨터망의 확대 및 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있다. 이에 따라 침입자들로부터 침입을 줄이기 위한 침입탐지시스템에 대한 요구가 증가되고 있다. 이에 본 논문에서는 침입탐지시스템의 기술적 구성요소 및 일반적인 요구사항과 침입탐지시스템의 분류방법, 그리고 대표적인 침입탐지기술에 대하여 살펴보고, 현재 국외에서 개발된 침입탐지시스템들을 데이터소스와 침입모델을 기반으로 분석하며, 국외 침입탐지시스템 현황과 국내 정보보호 산업에서 침입탐지시스템의 위상을 살펴본 후, 침입탐지시스템에 대한 연구 필요성에 대해 논한다.

  • PDF

CMA 인식을 통한 메모리 안전성 강화 연구

  • Hong, Junwha;Park, Chanmin;Jeong, Seongyun;Min, Jiun;Yu, Dongyeon;Kwon, Yonghwi;Jeon, Yuseok
    • Review of KIISC
    • /
    • v.32 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • C/C++에는 다수의 메모리 취약점이 존재하며 ASan은 낮은 오버헤드와 높은 탐지율로 이러한 메모리 취약점을 탐지하기 위해 광범위하게 사용되고 있다. 그러나 상용 프로그램 중 다수는 메모리를 효율적으로 사용하기 위해 Custom Memory Allocator(CMA)를 구현하여 사용하며, ASan은 이러한 CMA로부터 파생된 버그를 대부분 탐지하지 못한다. 이를 극복하기 위해 본 연구에서는 LLVM IR 코드를 RNN 신경망에 학습하여 CMA를 탐지하고, ASan이 CMA를 식별할 수 있도록 수정하여 CMA로부터 파생된 메모리 취약점을 탐지할 수 있는 도구인 CMASan을 제안한다. ASan과 CMASan의 성능 및 CMA 관련 취약점의 탐지 결과를 비교·분석하여 CMASan이 낮은 실행시간 및 적은 메모리 오버헤드로 ASan이 탐지하지 못하는 메모리 취약점을 탐지할 수 있음을 확인하였다.

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.

Semi-supervised learning based malware detection technique (준지도 학습 기반의 멀웨어 탐지 기법)

  • Yu-Ran Jeon;Hye Yeon Shim;Il-Gu Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.254-257
    • /
    • 2024
  • 5G 통신과 인공지능 기술이 발전하고, 사물인터넷 기기의 수가 증가함에 따라 종래의 정보보호체계를 우회하는 지능적인 사이버 공격이 증가하고 있다. 그러나, 종래의 기계학습 기반 멀웨어 탐지 방식은 이미 알려진 멀웨어만 탐지할 수 있으며, 새로운 멀웨어는 탐지가 어렵거나, 기존의 알려진 멀웨어로 잘못 분류되는 문제가 있다. 본 연구에서는 비지도학습을 사용하여 알려지지 않은 멀웨어를 탐지하고, 새롭게 탐지된 멀웨어를 새로운 라벨로 분류하여 재학습하는 준지도 학습 기반의 멀웨어 탐지 기법을 제안한다. 다양한 데이터 환경에서 알려지지 않은 멀웨어 데이터가 탐지 모델로 입력될 때 제안한 방식의 성능을 평가했다. 실험 결과에 따르면 제안한 준지도 학습 기반의 멀웨어 탐지 방법은 종래의 방식 대비 정확도를 약 16% 개선했다.

인공신경망 알고리즘을 통한 사물인터넷 위협 탐지 기술 연구

  • Oh, Sungtaek;Go, Woong;Kim, Mijoo;Lee, Jaehyuk;Kim, Hong-Geun;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.59-66
    • /
    • 2019
  • 사물인터넷 환경은 무수히 많은 이기종의 기기가 연결되는 초연결 네트워크 구성을 갖는 특성이 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안 기술로 네트워크를 통해 침입하는 위협의 효율적인 탐지 기술을 제안한다. 사물인터넷 환경에서의 대표적인 위협 행위를 분석하고 관련하여 공격 데이터를 수집하고 이를 토대로 특성 연구를 진행하였다. 이를 기반으로 인공신경망 기반의 오토인코더 알고리즘을 활용하여 심층학습 탐지 모델을 구축하였다. 본 논문에서 제안하는 탐지 모델은 비지도 학습 방식의 오토인코더를 지도학습 기반의 분류기로 확장하여 사물인터넷 환경에서의 대표적인 위협 유형을 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련연구를 통하여 머신러닝 기술과 위협 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 위협 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.

SAR-IR 융합 기반 표적 탐지 기술 동향 분석

  • Im, Yun-Ji;Won, Jin-Ju;Kim, Seong-Ho;Kim, So-Hyeon
    • ICROS
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • 단일 센서 기반의 표적 탐지 문제에서 센서의 한계 요소에 의해 탐지 성능이 제한된다. 따라서, 최근 단일 센서 기반의 표적 탐지 성능을 향상시키기 위한 방안으로 각 센서의 강점을 효과적으로 융합하는 다중 센서 정보 융합 기반의 표적 탐지 기법에 대한 연구가 활발히 진행되고 있다. 센서 정보 융합을 위해서는 각 센서별 영상 획득, 각 영상의 기하학적 정합, 센서 정보 융합 기반의 표적 탐지 기술이 필요하며, 본 논문에서는 이에 대한 기술 및 개발 동향을 소개한다.

  • PDF

Implementation of person tracking system using learning model method (모델 학습 방법을 이용한 사람 탐지 시스템의 구현)

  • 서경민;이칠우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.346-348
    • /
    • 2001
  • 본 논문은 입력 영상들로부터 추적이나 탐지의 대상이 되는 모델을 학습에 의해 생성하는 방법에 대해 기술한다. 일반적으로 탐지나 검출 시스템을 구성할 경우, 사용되는 대상 모델은 초기에 인위적으로 주어지게 된다. 이 경우 시스템이 동작하는 주위의 환경이 변하게 되면, 그에 맞게 새로운 대상 모델이 다시 주어져야 하는 단점이 있다. 또한 탐지 시스템 개발에 있어서 일반적인 문제점은 탐지 대상이 가려지거나 겹칠 경우 인식 성공률이 크게 떨어진다는 것이다. 본 논문에서는 사람 탐지 시스템의 일반적인 문제점들에 대응하고 탐지의 성능을 높이기 위하여 최소한의 제약 조건만이 미리 주어지고 실제 탐지 대상의 모델은 입력 영상으로부터 학습을 통해 구성 요소별로 생성하는 방법에 대해 기술한다.

  • PDF

Distributed and Kernel based Integrated Intrusion Detection System (분산 및 커널 기반의 통합형 침입탐지시스템)

  • Park, Jong-Youl;Lee, Dong-Ik;Yoon, Seok-Hwan;Park, Joong-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.833-836
    • /
    • 2000
  • 지금까지 침입탐지시스템은 침입행위를 어떻게 판단할 것인가 하는 부분에 많은 연구가 진행되었다. 고속 네트워크과 다양한 사용자의 요구는 침입탐지시스템이 더 많은 데이터의 처리를 요구하게 되었고, 많은 크래커들에 의해서 더욱 새롭고 다양한 침입방법이 소개되었다. 침입탐지시스템은 새로운 침입 방법과 더 많은 데이터를 실시간으로 처리하기 위해서는 고성능의 그리고 지능형의 데이터 처리 기술이 절실하다. 본 논문은 실시간 데이터 처리와 새로운 침입 방법에 대해서 능동적인 대처를 위해서 멀티 에이전트 기반의 분산 침입탐지기술과 데이터 중심의 비정상행위 탐지 기술인 커널 기반의 침입탐지기술의 혼합형 침입탐지시스템을 제안한다.

  • PDF

Sound Source Localization Using Matched Filter Array Processing (정합필터배열처리를 이용한 소음원 탐지)

  • 윤종락
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.84-87
    • /
    • 1998
  • 소음원 탐지는 환경 소음제어, 음향 표적 탐지 및 음성 통신 등의 광범한 분야에 적용되는 연구분야로 Beamforming 기술, 상관함수법, 음향인테시티법등 다양한 기술이 적용되는 분야이다. 본 연구에서는 최근 그 응용 범위가 증대고고 있는 Matched Filterig 기술을 이용한 소음원 탐지기술의 수치 해석 결과로 종래 연구가 현상적인 특성의 1차적 응용이라면 본 연구는Matched filtering 의 공간 분해능 특성을 해석한 것으로 배열 중심선과 소음원이 이루는 경사각에 따른 분해능 특성을 중심으로 논의되었다.

  • PDF