• 제목/요약/키워드: 탐지규칙

검색결과 241건 처리시간 0.025초

침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크 (An Alert Data Mining Framework for Intrusion Detection System)

  • 신문선
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.459-466
    • /
    • 2011
  • 이 논문에서는 침입 탐지시스템의 체계적인 경보데이터관리 및 경보데이터 상관관계 분석을 위하여 데이터 마이닝 기법을 적용한 경보 데이터 마이닝 프레임워크를 제안한다. 적용된 마이닝 기법은 속성기반 연관규칙, 속성기반 빈발에피소드, 오경보 분류, 그리고 순서기반 클러스터링이다. 이들 구성요소들은 각각 대량의 경보 데이터들로부터 알려지지 않은 패턴을 탐사하여 공격시나리오를 유추하거나, 공격 순서를 예측하는 것이 가능하며, 데이터의 그룹화를 통해 고수준의 의미를 추출할 수 있게 해준다. 실험 및 평가를 위하여 제안된 경보데이터 마이닝 프레임워크의 프로토타입을 구축하였으며 프레임워크의 기능을 검증하였다. 이 논문에서 제안한 경보 데이터 마이닝 프레임워크는 기존의 경보데이터 상관관계분석에서는 해결하지 못했던 통합적인 경보 상관관계 분석 기능을 수행할 뿐만 아니라 대량의 경보데이터에 대한 필터링을 수행하는 장점을 가진다. 또한 추출된 규칙 및 공격시나리오는 침입탐지시스템의 실시간 대응에 활용될 수 있다.

데이터 품질진단 기법을 이용한 연구개발비 이상거래 실시간 탐지 (Real-Time Fraud Detection using Data Quality Diagnosis Techniques for R&D Grant)

  • 장기만;김창수;정회경
    • 한국정보통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2609-2614
    • /
    • 2015
  • 국가연구개발 사업을 계획하고 관리하는 기관에서는 연구개발비 오 남용 및 부정 집행을 방지하기 위하여 다양한 대책을 마련하여 시행하고 있으나 연구개발비의 오 남용을 방지하는 데는 한계를 드러내고 있다[1,2]. 본 논문에서는 이상거래에 대한 사후 적발로 인한 연구개발비 오 남용을 방지하고자 연구개발비 집행계획 단계부터 정보를 수집하여 이상거래를 탐지할 뿐만 아니라 그 결과를 주관연구기관, 전문기관, 신용카드사 간의 상호 실시간 연동으로 공유하여 활용하도록 하였다. 이를 위해 데이터 품질진단 기법 중 연구개발 관련 규정 및 매뉴얼, Q&A, FAQ, 담당자 인터뷰 결과 등과 같은 다양한 정보로부터 업무규칙을 도출하는 아웃사이드인(Outside-In) 분석 방법을 이용하였다.

API 호출 빈도를 이용한 악성코드 패밀리 탐지 및 분류 방법 (Malware Family Detection and Classification Method Using API Call Frequency)

  • 조우진;김형식
    • 정보보호학회논문지
    • /
    • 제31권4호
    • /
    • pp.605-616
    • /
    • 2021
  • 악성코드는 임의의 프로그램을 대상으로 정확하게 식별할 수 있어야 하지만, 분류 기법을 이용하는 기존 연구들은 제한된 샘플에만 적용할 수 있다는 한계가 있다. 본 논문은 임의의 프로그램으로부터 악성코드 패밀리를 탐지하고 분류하기 위해 API 호출 빈도를 이용하는 방법을 제안한다. 제안 방법은 특정 API에 대한 호출 빈도가 임계값을 넘는지 검사하는 규칙을 정의하고, 해당하는 규칙에 의한 비율 정보를 활용하여 특정 패밀리를 식별하는 것이다. 본 논문에서는 결정트리 알고리즘을 응용하여 학습셋으로부터 특정 패밀리를 가장 잘 식별할 수 있는 값으로 임계값을 결정하였다. 4,443개의 샘플을 이용해 학습셋과 시험셋을 나눠 성능을 측정한 결과 패밀리 탐지의 경우 85.1%의 정밀도와 91.3%의 재현율을 보이고, 분류의 경우 97.7%의 정밀도와 98.1%의 재현율을 보여 악성코드 패밀리를 효과적으로 식별할 수 있음을 확인하였다.

스팸메일 차단을 위한 SMTP 보안 게이트웨이 설계 (Design of the Secured SMTP Gateway for Spam-Mail Interception)

  • 이창성;이은선;한영주;김희승;정태명
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.1087-1090
    • /
    • 2004
  • 인터넷이 발전함에 따라 기업의 업무, 커뮤니케이션 등이 온라인으로 전환되고 있으며, 정보 전달의 통로로써 전자 메일의 사용이 나날이 늘어남과 동시에 전자 메일을 통한 스팸메일의 폭발적인 증가로 인한 심각성 또한 대두되고 있다. 현재 스팸메일을 막기 위한 여러 가지 방법이 제안되었으나, 대부분 메일 서버내의 정책에 따른 메일 필터링 방식으로써 완벽한 스팸메일 탐지를 제공하지 못하며, 스팸메일로 인한 메일서버 및 네트워크 자원 손실 문제는 여전히 해결되지 않고 있다. 본 논문에서는 스팸메일 탐지율을 높이고 네트워크 내 자원 손실을 예방할 수 있는 SMTP 보안 게이트웨이를 제안하고자 한다. 본 SMTP 보안 게이트웨이는 스팸메일 차단 규칙에 의한 메일 필터링을 기본적으로 제공하고, 룰에 정의되지 않은 메일에 대해서는 사용자 선택에 기반한 메일 전송을 제공한다. 이는 규칙에 정의되지 않은 스팸메일에 대한 탐지 가능성을 높이며, 궁극적으로 메일서버의 자원 및 네트워크 자원의 가용성을 높일 수 있다.

  • PDF

Snort를 이용한 비정형 네트워크 공격패턴 탐지를 수행하는 Spark 기반 네트워크 로그 분석 시스템 (Spark-based Network Log Analysis Aystem for Detecting Network Attack Pattern Using Snort)

  • 백나은;신재환;장진수;장재우
    • 한국콘텐츠학회논문지
    • /
    • 제18권4호
    • /
    • pp.48-59
    • /
    • 2018
  • 최근 네트워크 기술의 발달로 인해 다양한 분야에서 네트워크 기술이 사용되고 있다. 그러나 발전하는 네트워크 기술을 악용하여 공공기관, 기업 등을 대상으로 하는 공격 사례가 증가하였다. 한편 기존 네트워크 침입 탐지 시스템은 네트워크 로그의 양이 증가함에 따라 로그를 처리하는데 많은 시간이 소요된다. 따라서 본 논문에서는 Snort를 이용한 비정형 네트워크 공격패턴 탐지를 수행하는 Spark 기반의 네트워크 로그 분석 시스템을 제안한다. 제안하는 시스템은 대용량의 네트워크 로그 데이터에서 네트워크 공격 패턴탐지를 위해 필요한 요소를 추출하여 분석한다. 분석을 위해 Port Scanning, Host Scanning, DDoS, Worm 활동에 대해 네트워크 공격 패턴을 탐지하는 규칙을 제시하였으며, 이를 실제 로그 데이터에 적용하여 실제 공격 패턴 탐지를 잘 수행함을 보인다. 마지막으로 성능평가를 통해 제안하는 Spark 기반 로그분석 시스템이 Hadoop 기반 시스템에 비해 로그 데이터 처리 성능이 2배 이상 우수함을 보인다.

단일 클래스 분류기를 사용한 차량 해킹 탐지 (Detection of Car Hacking Using One Class Classifier)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권6호
    • /
    • pp.33-38
    • /
    • 2018
  • 본 논문에서는 단일 클래스만을 학습하여 차량에 대한 새로운 공격을 탐지한다. 분류 성능 평가를 위해 Car-Hacking 데이터셋을 사용한다. Car-Hacking 데이터셋은 실제 차량의 OBD-II 포트를 통해 CAN (Controller Area Network) 트래픽을 로깅하여 생성된다. 이 데이터셋에는 네 가지 공격 유형이 포함된다. 실험에 사용한 단일 클래스 분류기법은 정상 클래스만을 학습하여 비정상인 공격 클래스를 분류해내는 비지도 학습이다. 비지도 학습 방법을 사용하는 경우에 훈련 과정에서 네거티브 인스턴스를 사용하지 않기 때문에 고효율의 분류 성능을 내는 것은 어렵다. 하지만, 비지도 학습은 라벨이 없는 새로운 공격 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 네트워크 침입탐지 시스템에서 서명기반의 규칙으로 탐지하기 어려운 새로운 공격 유형을 탐지하기 위해 단일 클래스 분류기를 사용한다. 제안 방법은 새로운 공격을 모두 탐지하고 정상데이터에 대해서도 효율적인 분류 성능을 보이는 파라미터 조합을 제시한다.

접근 기록 분석 기반 적응형 이상 이동 탐지 방법론 (Adaptive Anomaly Movement Detection Approach Based On Access Log Analysis)

  • 김남의;신동천
    • 융합보안논문지
    • /
    • 제18권5_1호
    • /
    • pp.45-51
    • /
    • 2018
  • 데이터의 활용도와 중요성이 점차 높아짐에 따라 데이터와 관련된 사고와 피해는 점점 증가 하고 있으며, 특히 내부자에 의한 사고는 그 위험성이 더 높다. 이런 내부자의 공격은 전통적인 보안 시스템으로 방어하기 힘들어, 규칙 기반의 이상 행동 탐지 방법이 널리 활용되어오고 있다. 하지만, 새로운 공격 방식 및 새로운 환경과 같이 변화에 유연하게 적응하지 못하는 문제점을 가지고 있다. 본 논문에서는 이에 대한 해결책으로서 통계적 마르코프 모델 기반의 적응형 이상 이동 탐지 프레임워크를 제안하고자 한다. 이 프레임워크는 사람의 이동에 초점을 맞추어 내부자에 의한 위험을 사전에 탐지한다. 이동에 직접적으로 영향을 주는 환경 요소와 지속적인 통계 학습을 통해 변화하는 환경에 적응함으로써 오탐지와 미탐지를 최소화하도록 설계되었다. 프레임워크를 활용한 실험에서는 0.92의 높은 F2-점수를 얻을 수 있었으며, 나아가 정상으로 보여지지만, 의심해볼 이동까지 발견할 수 있었다. 통계 학습과 환경 요소를 바탕으로 행동과 관련된 데이터와 모델링 알고리즘을 다양화 시켜 적용한다면 보다 더 범위 넓은 비정상 행위에 대해 탐지할 수 있는 확장성을 제공한다.

  • PDF

메모리 분석 우회 기법과 커널 변조 탐지 연구 (A study on Memory Analysis Bypass Technique and Kernel Tampering Detection)

  • 이한얼;김휘강
    • 정보보호학회논문지
    • /
    • 제31권4호
    • /
    • pp.661-674
    • /
    • 2021
  • 커널을 변조하는 루트킷과 같은 악성코드가 만약 메모리 분석을 회피하기 위한 메커니즘을 추가하게 될 경우, 분석이 어려워지거나 불가능하게 되면서 분석가의 판단에 악영향을 미칠 수 있다. 따라서 향후 고도화된 커널 변조를 통해 탐지를 우회하는 루트킷과 같은 악성코드에 선제적으로 대응하고자 한다. 이를 위해 공격자의 관점에서 윈도우 커널에서 사용되는 주요 구조체를 분석하고, 커널 객체를 변조할 수 있는 방법을 적용하여 메모리 덤프 파일에 변조를 진행하였다. 변조 결과 널리 사용되는 메모리 분석 도구에서 탐지가 되지 않는 것을 실험을 통해 확인하였다. 이후 분석가의 관점에서 변조 저항성의 개념을 사용하여 변조를 탐지할 수 있는 소프트웨어 형태로 만들어 기존 메모리 분석 도구에서 탐지되지 않는 영역에 대해 탐지 가능함을 보인다. 본 연구를 통해 선제적으로 커널 영역에 대해 변조를 시도하고 정밀 분석이 가능하도록 인사이트를 도출하였다는 데 의의가 있다 판단된다. 하지만 정밀 분석을 위한 소프트웨어 구현에 있어 필요한 탐지 규칙을 수동으로 생성해야 한다는 한계점이 존재한다.

Medusa: 시맨틱 웹 규칙 언어 처리를 위한 확장형 서술 논리 추론기 (Medusa: An Extended DL-Reasoner for SWRL-enabled Ontologies)

  • 김제민;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권5호
    • /
    • pp.411-419
    • /
    • 2009
  • 현재 온톨로지의 논리적 오류와 개념들 간의 포함 관계를 탐지하는 추론 엔진들이 소개되고 있다. 대부분의 서술 논리 기반 온톨로지 추론 엔진은 태블로 알고리즘을 기반으로 구축되었다. 그러나 태블로 알고리즘 기반의 온톨로지 추론은 인스턴스 추론에 있어서 한계를 보인다. 이에 본 논문에서는 Medusa 시스템을 제안한다. Medusa는 서술 논리로 표현된 온톨로지의 정형화된 의미를 기반으로 시맨틱 웹 규칙 언어(SWRL)를 지원하는 확장된 서술 논리 추론 엔진이다. 대부분의 서술 논리 기반 추론 엔진은 효과적으로 온톨로지 스키마 모델을 추론하지만 인스턴스(Assertional Knowledge) 정보를 추론하기 위한 규칙 기반 추론 기능을 제공하지는 않는다. 이러한 문제를 해결하기 위해서 Medusa는 서술 논리의 추론 방식과 규칙 기반 추론 방식을 동시에 사용한다. 본 논문에서 설명하는 Medusa의 프로토타입은 $Prot{\acute{e}}g{\acute{e}}$ API[1]를 사용하여 시맨틱 웹 규칙 언어 추론 엔진과 서술 논리 추론 엔진간의 상호작용을 제어한다.

색 왜곡 영상에서의 강건한 피부영역 탐지 방법 (Robust Skin Area Detection Method in Color Distorted Images)

  • 황대동;이근수
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.350-356
    • /
    • 2017
  • 실시간 인체 검출에 대한 관심이 높아짐에 따라 피부색을 통한 인체 검출에 대한 연구가 활발히 진행되고 있다. 하지만 대다수 기존 피부 탐지 방법은 정적인 피부색 모델을 이용하기 때문에 색 왜곡이 발생한 영상에서 낮은 탐지율을 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 경사도 맵과 채도, YCbCr 공간의 Cb, Cr 요소를 퍼지로 분류하는 방법을 사용하여 피부영역을 탐지하는 기법을 제시한다. 제안하는 방법의 기본적인 절차는 경사도 맵 생성, 채도 맵 생성, CbCr 맵 생성, 퍼지 분류, 피부영역 이진화 순이다. 이 방법은 색상 이외의 특징을 이용하여 조명, 인종, 나이, 개인차 등에 상관없이 강건하게 피부를 탐지하는 것에 중점을 두고 있다. 색상 이외의 피부 특징은 비피부영역과의 경계가 모호하여 구분이 명확하지 않다. 이를 해결하기 위해 경사도, 채도와 색상 특징간의 관계를 소속함수로 정의하고 이를 이용하여 108가지의 퍼지 규칙을 생성하여 피부영역을 탐지한다. 제안한 방법의 검출 정확도는 86.35%로 기존 방법보다 2~5 % 우수함을 확인하였다.