• 제목/요약/키워드: 탐욕적재순위

검색결과 1건 처리시간 0.013초

Methods Comparison: Enhancing Diversity for Personalized Recommendation with Practical E-Commerce Data

  • Paik, Juryon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.59-68
    • /
    • 2022
  • 추천시스템은 소비자를 대신하여 소비자가 선호할 만한 아이템이나 서비스를 검색하여 구매할 수 있도록 한다. 추천시스템의 추천은 사용자들이 경험하지 않은 아이템들에 대한 선호 예측이기 때문에 완전하게 맞는 답이 도출되는 것은 불가능하다. 따라서 예측에 대한 평가가 수행되어야만 비로소 추천시스템이 정확한지 아닌지를 판단할 수 있다. 그러나 사용자 선호에 대한 예측 정확성만을 높이는 추천은 오히려 사용자의 만족도를 하락시킬 수 있는데 이는 사용자의 취향만을 반영한 편중된 결과로 사용자는 다양한 아이템들로 구성된 추천 결과를 받을 수 없는 필터버블 현상이 야기되기 때문이다. 품질 측정 지표의 다각화가 필요한 이유이고 대표적으로 다양성 지표가 사용된다. 본 논문에서는 추천 결과의 다양성 증대를 위한 3가지 기본 접근방법인 bin packing, weighted random choice, greedy re-ranking을 실제 e-커머스 데이터인 패션 쇼핑몰 데이터에 적용하여 도출된 결과와 F1 score에 기반을 둔 차이를 분석한다.