• Title, Summary, Keyword: 탈황, 탈질

Search Result 53, Processing Time 0.058 seconds

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Pulse Corona induced Plasma Chemical Processing (PPCP에 의한 연소가스 중 NOx, SOx 동시제거 특성)

  • Park, Jae-Yoon;Koh, Yong-Sul;Jung, Jang-Gun;Kim, Jung-Dal
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.211-216
    • /
    • 2000
  • In this paper, experimental investigations were carried out to remove NOx, SOx simultaneously from a simulated combustion flue gas [$NO(0.02%)-SO_2(0.08%)-CO_2-Air-N_2$] by using a pulse corona induced plasma chemical processing. Discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was $2.5{\ell}/min$ for bubbling aqueous NaOH solution. Ammonia gas(l4.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio(MR) was determined based on [$NH_3$] and [$NO+SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration. but SOx removal rate was not significantly affected by initial concentration. The NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF

Simultaneous Removal of $SO_2$ and NOx Using Ozone Generator and Absorption- Reduction Technique (오존발생장치와 흡수환원법을 이용한 배기가스 동시 탈황 탈질 공정)

  • Mok, Young-Sun;Lee, Joo-Hyuck;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • The injection of ozone, produced by dielectric barrier discharge, into the exhaust gas gives rise to a rapid oxidation of NO that is the main component of nitrogen oxides($NO_x$) in most practical exhaust gases. Once NO is converted into $NO_2$, it on readily be reduced to $N_2$ in the next step by a reducing agent such as sodium sulfide and sodium sulfite. The reducing agents used ca also remove $SO_2$ effectively, which makes it possible to treat $NO_x\;and\;SO_2$ simultaneously. The present two-step process made up of an ozonizing chamber and an absorber containing a reducing agent solution was able to remove about 95% of the $NO_x$ and 100% of the $SO_2$, initially contained in the simulated exhaust gas. The formation of $H_2S$ from sodium sulfide was prevented by using a strong basic reagent(NaOH) together with the reducing agent. The removal of $NO_x$\;and\;SO_2$ was more effective for $Na_2S$ than $Na_2SO_3$.