• Title/Summary/Keyword: 탈탄

Search Result 88, Processing Time 0.038 seconds

Analysis of the Legal Blind Sectors of the Large-Scale Offshore Wind Farms of Korea and Proposal to Improve Safety Management (대규모 해상풍력발전단지의 안전관리를 위한 법적 사각지대 분석 및 개선 제안)

  • Inchul Kim;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.127-138
    • /
    • 2023
  • A variety of decarbonized energy sources are being developed globally to realize carbon neutrality (Net Zero) by 2050 as a measure to address the global climate crisis. As the Korean government has also established a Renewable Energy 3020 policy and promoted energy development plans using solar or wind power, large-scale offshore development projects not present before in coastal waters, such as offshore wind farms, are being promoted. From ships' point of view, offshore facilities present obstacles to safe navigation, and with the installation of marine facilities, ship collisions or contact accidents between ships and marine facilities may occur in the narrowed water areas. In addition, there are concerns about environmental pollution and human casualties caused by marine accidents. Accordingly, we review overseas and domestic offshore wind farm development plans, analyze whether institutional devices are in place to ensure the safe passage of ships in wind farm areas, and study the safe operation of large-scale offshore wind farms and safe passage of ships along the Korean coast by comparing overseas legislative cases with domestic laws and presenting a proposal to illuminate the legal blind sectors.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Changes in Polyamine and Tyramine Concentrations in Rice (Oryza sativa L.) during Maturation and Preharvest Sprouting (벼 등숙기와 수발아 기간동안 폴리아민과 티라민의 농도변화)

  • Kim, Tae-Wan;Kim, Jae-Hun;Hwang, Seon-Woong;Hong, Byuong-Hee;Lee, Sang-Eun;Yun, Seung-Gil;An, Jae-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The levels of polyamines were measured to investigate the alternative nitrogen metabolism during maturation and sprouting in rice. The rice plants (cv. Ansanbyeo) were cultivated in 20-year-old non-fertilized field. The flag leaves and spikes were collected weekly after the earing stage and the seeds were harvested daily after lodging. Free, bound, and conjugated polyamines were analyzed using reverse phase HPLC. Putrescine, spermidine, spermine, agmatine and tyramine were the major amines found in rice. The level of stress-induced amine, putrescine increased during the preharvest sprouting confirming that the process was a stress to the plants. With all other polyamines, tyramine in free form decreased in flag leaves and panicles during seed maturation. However, agmatine in bound form showed a noticeable increase about 8-fold during 6 weeks period of maturation after which it declined to the bottom level. Among the individual amines, tyramine and spermine in conjugated form showed a marked change during matutation and sprouting. Interestingly, the level of tyramine with all conjugated polyamine decreased in spikes during seed maturation and increased during preharvest sprouting implying that tyrosine decarboxyation and conjugation to phenolic acids may play a key role in preharvest sprouting. Spermine in conjugated form was synthesized only at the early earing stage in the level of $3.4mole\;g^{-1}$ fresh weight, and then decreased to the level of nmole during maturation. Thereafter, it dramatically increased to 2.8 mole during preharvest sprouting. In this study we found the tyramine is a major amine in rice, and it would play a critical role in N-assimilation during seed maturation and sprouting.

A Study on the Carbothermic Reduction and Refining of V, Ta and B Oxides by Ar/Ar-H2 Plasma (Ar/Ar-H2 플라즈마에 의한 V, Ta, B 산화물의 탄소용융환원 및 정련)

  • Chung, Yong-Sug;Park, Byung-Sam;Hong, Jin-Seok;Bae, Jung-Chan;Kim, Moon-Chul;Baik, Hong-Koo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.81-92
    • /
    • 1996
  • The Ar/Ar-$H_2$ plasma method was applied to reduce oxides and refine metals of V, Ta and B. In addition, the high temperature chemical reaction in Ar plasma and of the refining reaction in the Ar-(20%)$H_2$ plasma were analyzed. The crude V of 96wt% purity was obtained at the ratio of $C/V_{2}O_{5}=4.50$ by the Ar plasma reduction grade and the maximum reduction was obtained at $C/V_{2}O_{5}=4.50$ due to the $O_{2}$ loss from the thermal decomposition of vanadium oxide. In the Ar-(20%)$H_2$ plasma refining, the metallic V of 99.2wt% was produced at the ratio of $C/V_{2}O_{5}=4.40$. It was considered that a main refining reaction resulted from the chemical reaction between the residual carbon and residual oxygen. The metallic Ta of 99.8wt% was obtained at the ratio of $C/Ta_{2}O_{5}=5.10$ in a Ar plasma reduction and the Oz loss from the thermal decomposition of tantalum pentoxide did not take place. The deoxidation reaction was more significant than the decarburization reaction in the Ar-(20%)$H_2$ plasma refining and the metallic Ta of 99.9wt% was produced within the range of $C/Ta_{2}O_{5}$ ratio of 4.50 to 5.10. The Vickers hardness of Ta in the above mentioned range was about 220Hv due to the decrease in a residual oxygen by the deoxidation reaction. On the other hand, C is no suitable agent for the reduction of $B_{2}O_{3}$ by the Ar and Ar-$H_2$ plasma. But Fe-B-Si alloy was produced with the reduction of $B_{2}O_{3}$ in the melt when Fe, C, $B_{2}O_{3}$, and ferroboron mixtures were melted by the high frequency induction melting.

  • PDF

Interpretation of Limestone Provenance, Materials and Making Characteristics for Lime-Soil Mixture on Tomb Barrier of the Yesan Mokri Site in Joseon Dynasty (조선시대 예산 목리유적 회격묘의 재질 및 제작특성과 석회의 산지 해석)

  • Lee, Chan Hee;Cho, Ji Hyun;Kim, Jiyoung
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.471-490
    • /
    • 2016
  • This study investigated provenance of raw materials and making technique of lime-based materials used in the tomb barriers of the Yesan Mokri tombs from Joseon dynasty on the basis of analysis to material characteristics and physical properties. In the barrier materials, dry density and porosity are the highest value ($1.82g/cm^3$) and the lowest value (25.20%) in the south wall of No. 1 tomb, respectively. Dry density and porosity are inversely proportional in all barrier materials, but unconfined compressive strength, which is the highest value of $182.36kg/cm^2$ in the No. 2 tomb, does not show an interrelation with porosity and density. Mineral components in the lime-soil mixtures of the tomb barrier are mainly quartz, feldspar, mica and calcite about 200 to $600{\mu}m$ size with yellowish brown matrix. Hydrotalcite and portlandite are detected in the lime mixture, and kaolinite in the soils. The lime materials of the tomb barrier occurred in large quantities weight loss and variable endothermic peaks caused by decarbonization reaction of $CaCO_3$ in the range from 600 to $800^{\circ}C$ in thermal analysis. Making temperature of lime for the tomb barrier is presumed approximately about $800^{\circ}C$ based on the occurrences, compositions and thermal analysis. The tomb barriers are revealed to very wide composition ranges of major elements and loss-on-ignition (22.5 to 33.6 wt.%) owing to mixture of the three materials (lime, sand and clay). It is interpreted that low quality construction technique was applied as the limes are very heterogeneous mixture with aggregates, and curing of the lime was poorly processed in the tomb barriers. Possible limestone sources are distributed in many areas around the Mokri site where limestone conformation and quarries for commercial production are found within Yesan and Hongseong areas. Therefore, we estimated that raw materials were possibly supplied from the local mines near the Mokri site.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis (DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구)

  • Jae-Won Choi;Byoung-Know You;Yong-Sik Chu;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.