• Title/Summary/Keyword: 탈착입자

Search Result 63, Processing Time 0.031 seconds

Synthesis of Cu Nanoparticles through a High-Speed Chemical Reaction between Cuprous Oxide and Sulfuric Acid and Enhancement of Dispersion by 3-Roll Milling (아산화동과 황산간의 고속 화학반응에 의한 미세 Cu 입자의 합성과 삼본밀에 의한 분산성 개선)

  • Chee, Sang-Joo;Lee, Jong-Hyun;Hyun, Chang-Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • With the aim of using a filler material in a conductive paste, fine Cu nanoparticles were synthesized through the high-speed chemical reaction between cuprous oxide ($Cu_2O$) powder and sulfuric acid in distilled water. Under external temperature of $7^{\circ}C$, sulfuric acid concentration of 48%, and $Cu_2O$ amount of 30 g, the $Cu_2O$ particles were eliminated and slightly aggregated Cu nanoparticles were synthesized. Futhermore, Cu nanoparticles of 224 nm, in which the aggregation between particles was obviousiy much suppressed, were synthesized with the choice of an additive. In the particle sample, occasionally there are coarse particles formed by the aggregation of fine nanoparticles and weak linkages between the nanoparticles. However, the coarse particles were destroyed and the linkages were broken after mixing with a resin formulation, indicating the behavior of untangling the aggregation between nanoparticles.

Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels (선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.484-489
    • /
    • 2012
  • The objective of this work presented here was focused on analysis of particulate matter and nitrogen oxide characteristics in ESC test mode from heavy-duty diesel engine installed on-road vehicles applicable to prime propulsion engine for marine vessels. The authors confirmed that a large quantity particulate matter were emitted in high power density condition, nitrogen oxide characteristics were dependent on exhaust gas temperature. Particulate matters were reduced by 1/100~1/1,000 times in post DPF with test modes but filtration efficiency was decreased in the engine power fluctuation. In the case of the high speed and power condition, the exhaust level of particulate matters was increased according to increment of temperature of gas flowing into DPF. The orders of magnitude for particle concentration levels from the analysis of size distribution of particulate matters of test engine was different. Both emitting nano-sized particles below 100nm regardless of DPF and non-DPF.

$Al_2O_3$ 기판 위에 형성된 CuO 나노입자의 열처리 온도변화에 따른 구조적, 광학적 및 전자적 성질에 대한 연구

  • Park, Gyeong-Hun;Son, Dong-Ik;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.106-106
    • /
    • 2010
  • CuO 나노입자는 전기화학적 전지, 가스 센서 및 태양전지와 같은 나노 전자소자에 응용할 수 있는 대단히 유용한 물질이다. CuO 나노구조를 형성하기 위한 방법은 솔-겔법, 전기 화학적 방법 및 전구체의 열적 탈착방법 등으로 연구되어 왔으나 CuO 나노입자의 열처리 효과는 상대적으로 연구가 미흡하다. 본 연구에서는 $Al_2O_3$ 기판 위에 스핀 코팅법과 열처리를 사용하여 형성한 CuO 나노입자의 물리적 성질을 살펴보았다. CuO 나노 입자를 형성하기 위해 methanol에 Cu(I) acetate (5 wt%) 을 적절히 분산한 용액을 $Al_2O_3$ 기판 위에 7000 rpm으로 스핀 코팅을 한 후 $300^{\circ}C$, $500^{\circ}C$$700^{\circ}C$로 각각 1 시간 동안 산소 분위기에서 열처리를 하였다. X-선 회절법 결과는 CuO의 (200)$K_{\alpha}$와 (400) $K_{\alpha}$ 회절에 해당하는 피크가 나타났고 주사 전자현미경 상의 결과는 CuO 나노입자가 형성되었음을 확인하였다. 나노입자의 크기는 고배율 투과 전자현미경상에 의하여 3-5 nm 인 것으로 확인하였고 300 K에서 측정한 광루미네선스 스펙트럼은 CuO의 주된 스펙트럼 피크가 푸른색 영역에서 나타남을 알 수 있었다. X-선 광전자 분광법 스펙트럼은 Cu $2p_{3/2}$와 O 1s의 전자상태를 보여주었으며 복잡한 산화상태를 갖는 CuO는 Cu-O 결합과 산소의 화학적 흡착상태를 가지는 것으로 확인되었다. 이러한 결과는 $Al_2O_3$ 기판 위에 최적화된 CuO 나노 입자의 형성 방법과 구조적, 광학적 및 전자적 특성을 이해하는데 도움을 제공해 줄 것이다.

  • PDF

Numerical Simulation of PAHs in Masan Bay using STELLA program (STELLA프로그램을 이용한 마산만 PAHs 거동 시뮬레이션)

  • Heo, Min-Ji;Jang, Se-Joo;You, Young-Seok;Roh, Kyong-Joon;Cho, Hyeon-Seo;Kim, Dong-Myung
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.131-132
    • /
    • 2009
  • 마산만을 대상으로 하여 연안환경 중의 PAHs의 거동을 STELLA프로그램을 이용하여 파악하였다. 상태변수로는 용존 PAHs, 부유입자물질 중의 PAHs, 식물플랑크톤 내의 PAHs, 저질중의 PAHs 둥을 고려하였다. 화학적, 생물학적 과정으로는 용존 PAHs에서 광분해, 부유입자물질에서 흡착과 탈착, 식물플랑크톤에 의한 흡수 및 분비와 퇴적물로의 침강을 고려하였다. STELLA 프로그램을 이용하여 모델을 재현하였으며, 민감도 분석을 시행하였다. 또한 하천 및 대기로부터의 유입부하변동에 따른 현상황을 시나리오를 구성하여 시행하였다.

  • PDF

Mechanisms of Adsorption with Respect to Sulfate Mobility in Multispecies Systems of Soils (토양의 다중이온체계내에서의 황산이온의 이동을 고려한 흡착기작)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • The mobility of sulfate in soils defends on several factors including redox potential, soil mineralogy, pH, and the presence of other anions that compete for sorption sites with sulfate. The proposed model of adsorption mechanism for sulfate postulated that reaction is between anions in solution and charged surfaces of soil particles. With appropriate choice of parameters obtained from the adsorption-desorption experiments, the equation of transport model adapt an empirical approach, capable of handling most general equilibrium adsorption isotherms, suitable for multispecies systems.

  • PDF

Adsorption-Desorption Modeling of Pollutants on Granular Activated Carbon (오염물질에 대한 입상 활성탄의 흡·탈착 모델링)

  • Wang, Chang Keun;Weber, Walter J. Jr.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 1993
  • It is important to understand the interrelationship between adsorption, equilibrium and mass transport in efficient design and operation of the granular activated carbon(GAC) adsorption systems. In this study, the micro-diameter-depth adsorption system(MIDDAS) technique was developed to estimate equilibrium and mass transport parameters, which were utilized to simulate adsorption and mass transport phenomena dynamically and mathematically. The homogeneous surface diffusion model(HSDM) utilizing the estimated equilibrium and mass transport parameters including the film transfer coefficients and surface diffusivities from the MIDDAS technique, successfully predicted competitive adsorption, desorption and chromatographic displacement effects. In the binary solute system of p-chlorophenol(PCP) and p-nitrophenol(PNP), PCP was displaced by PNP and the HSDM could predict successfully. While the HSDM described the desorption breakthrough curves for PCP, PNP and PTS well when complete reversible adsorption was assumed, the desorption breakthrough curves for DBS could be predicted after subsequent incorporation of the degree of irreversibility into the model simulations.

  • PDF

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process (활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가)

  • Park, Cheol Oh;Oh, Ju Seok;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Ultrasonic, Chemical Stability and Preparation of Self-Assembled Fullerene$[C_{70}]$-Gold Nanoparticle Films (자기조립 풀러렌$[C_{70}]$-금 나노입자 필름 제조와 초음파적, 화학적 안정성)

  • Ko, Weon-Bae;Shon, Young-Seok
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.272-276
    • /
    • 2005
  • [ $C_{70}$ ]-gold nanoparticle multilayer films were self-assembled using a 'dirt-ball' method on the reactive surface of glass slides functionalized with 3-aminopropyltrimethoxysilane. The functionalized glass slides were soaked in the solution containing both unmodified $C_{70}$ and ${\omega}$-amino-functionalized gold nanoparticles. Organic reaction (amination) facilitated the assembly of multilayer $C_{70}$-gold nanoparticle films, which have grown up to several layers. Chemical stability of $C_{70}$-gold nanoparticle films was studied by monitoring the changes in absorbance after the immersion of the films in acidic solution. In addition, ultrasonic stability of these nanoparticle films was studied by exposing them to ultrasonic irradiated surrounding, which resulted in partial desorption and a little aggregation of nanoparticles on solid surfaces.

Gas/particle Partitioning of PAHs Segregated with Particle Size in Equilibrium States (대기 중 PAHs의 입경별 가스/입자 분배평형에 관한 연구)

  • Park, Jin-Soo;Lee, Dong-Soo;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1270-1276
    • /
    • 2005
  • When gas/particle partitioning of PAHs in the atmosphere approached an equilibrium state, the slope of linear regression between gas/particle partitioning coefficient($logK_p$) and subcooled liquid vapour pressure($logP_L^O$) was -1. But it was alleged that the slope of equilibrium state might not be -1 in real atmospheric environment due to heterogeneous characteristics of particulate matter. In This study, it would be found if gas/particle partitioning of PAHs segregated with particle size in equilibrium state was based on the hypothesis mentioned above. We have calculated the slopes of $logK_p$ v.s. $logP_L^O$ after collecting 10 set samples which consisted of particulate and vaporous phases. The slope was close to -1 in equilibrium states. But despite of equilibrium state, all slopes segregated with particle size were not close to -1 and those were gentler with larger particle size. The difference of slopes in equilibrium states was almost against the assumption of gas/particle partitioning theory. When the gas/particle partitioning was due to adsorption, the desorption enthalpy was different in each particle size. When it was absorption, the activity coefficient was different. The difference of desorption enthalpy and activity coefficient in each particle size indicate the heterogeneous characteristics of the bulk particle. This may be the reason for slope variation with particle size even though in an equilibrium state.