• Title/Summary/Keyword: 탈착계류시스템

Search Result 3, Processing Time 0.014 seconds

A Study on the Global Motion Performance of Floater and Mooring Due to Arrangement of Detachable Mooring System (탈착형 계류시스템 배치에 따른 부유식 해양구조물의 운동 및 계류성능에 관한 연구)

  • Kangsu Lee;Hyun-Sung Kim;Byoung Wan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.2
    • /
    • pp.26-33
    • /
    • 2023
  • In this study, the global response characteristics of floater and mooring for floating offshore wind turbine with a detachable mooring system are performed. Global motion and structural response result extracted from the coupled motion analysis of 10MW DTU floating offshore wind turbine with detachable mooring system modeled by high-order boundary element model and finite element mesh, were used to study the characteristics of tension on mooring lines subjected to three different types of ocean loads. Breaking limit of mooring line characterized by wind, current and wave load has a major effect on the distribution of mooring tension found in time domain analysis. Based on the numerical results of coupled motion analysis, governing equation for calculating the motion response of a floater under ocean loads, and excitation force and surge motion and tension respectively are presented using excursion curve. It is found that the response of floater is reliable and accurate for calculating the tension distributions along the mooring lines under complex loadings. This means that the minimun breaking limit of mooring system satisfied a design criteria at ultimate ocean environmental loading condtions.

Structure Analysis and Scale Model Test for Strength Performance Evaluation of Submersible Mooring Pulley Installed on Floating Offshore Wind Turbine (부유식 해상풍력발전기용 반잠수식 계류 풀리의 강도 성능평가를 위한 구조해석과 축소 모형시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing owing to global warming. In a situation where the installation of floating wind turbines is increasing worldwide, concerns about the huge loss and collapse of floating offshore wind turbines owing to strong typhoons are deepening. A new type of disconnectable mooring system must be developed for the safe operation of floating offshore wind turbines. A new submersible mooring pulley considered in this study is devised to more easily attach or detach the floating of shore wind turbine with mooring lines compared with other disconnectable mooring apparatuses. To investigate the structural safety of the initial design of submersible mooring pulley that can be applied to an 8MW-class floating type offshore wind turbine, scale-down structural models were developed using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by conducting the tensile tests. The finite element analysis (FEA) of submersible mooring pulley was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the FEA, the structural weak parts on the submersible mooring pulley were reviewed. The structural model tests were conducted considering the main load conditions of submersible mooring pulley, and the FEA and test results were compared for the locations that exceeded the maximum tensile stress of the material. The results of the FEA and structural model tests indicated that the connection structure of the body and the wheel was weak in operating conditions and that of the body and the chain stopper was weak in mooring conditions. The results of this study enabled to experimentally verify the structural safety of the initial design of submersible mooring pulley. The study results can be usefully used to improve the structural strength of submersible mooring pulley in a detailed design stage.

Structural and Fatigue Strength Evaluation of a Fairlead Chain Stopper for Floating Offshore Wind Turbines (10 MW급 부유식 해상풍력장치용 패어리드 체인스토퍼의 구조 및 피로 강도 평가)

  • Youngjae Yu;Sanghyun Park;Youngsik Jang;Sangrai Cho
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, a structural and fatigue strength evaluation of the Fairlead Chain Stopper (FCS) was performed as a part of the development of a disconnectable mooring system to be applied to 10MW floating offshore wind power generation systems. To estimate the load acting on the FCS, a 10 MW semi-submersible floater was designed using the 10 MW wind turbine developed by Technical University of Denmark(DTU). The minimum breaking load (MBL) of the grade R5 and 147mm mooring chain was applied for the FCS strength analysis. The fatigue load was obtained from the coupled analysis results conducted by a collaborating research institute. The structural and fatigue safety of FCS were evaluated in accordance with DNV codes. From the evaluation results, it was confirmed that the FCS satisfies the structural and fatigue safety requirements.