• Title/Summary/Keyword: 탈염

Search Result 305, Processing Time 0.026 seconds

Treatment of hazardous chemicals by Nanoscale Iron powder (나노크기 철 분말을 이용한 난분해성 유해화합물질의 처리)

  • 최승희;장윤영;황경엽;김지형
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.85-93
    • /
    • 1999
  • The destruction of hazardous chemicals such as chlorinated organic compounds(COCs) and nitroaromatic compounds(NACs) by zero-valent iron powder is one of the latest innovative technologies. In this paper. the rapid dechlorination of chlorinated compounds as well as transformation of nitro functional group to amine functional group in the nitroaromatic compounds using synthesized zero-valent iron powder with nanoscale were studied in anaerobic batch system. Nanoscale iron, characterized by high surface area to mass ratios(31.4$\textrm{m}^2$/g) and high reactivity, could quickly reacts with compounds such as TCE, chloroform, nitrobenzene, nitrotoluene, dinitrobenzene and dinitrotoluene, at concentration of 10mg/L in aqueous solution at room temperature and pressure. In this study, the TCE was dechlorinated to ethane and chloroform to methane and nitro groups in NACs were transformed to amino groups in less than 30min. These results indicated that this chemical method using nanoscale iron powder has the high potential for the remediation of soils and groundwater contaminated with hazardous toxic chemicals including chlorinated organic compounds and nitro aromatic compounds.

  • PDF

Chemical structure and PVC shape after dehydrochlorination of PVC (탈염화수소후의 PVC형상과 화학구조)

  • 신선명;전호석
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.37-42
    • /
    • 2004
  • PVC powder was dehydrochlorinated by hydrothermal reaction at reaction time 0∼5 hr, reaction temperature $200∼250^{\circ}C$ in 0∼2M NaOH solution, and shape and structure of the PVC residue was investigated. The shape of the residue was changed largely according to NaOH concentration. Most of the residue was cohered in the aqueous solution, and many pores less than 10 $\mu\textrm{m}$ were formed on the surface. Dense network structure was well developed inside the residue. On the other hand, the residue in the NaOH solution was not cohered and its shape is roughly spherical. In the IR spectrum of the residue both in water and NaOH solution at $250^{\circ}C$, aromatic rings and absorption peak by C=C double bond were observed. From the results, it was observed that aromatic circle reaction and bridge reaction occured inter and intra molecules.

Crosslinking of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes (폴리페닐렌 옥사이드 음이온 교환막의 가교결합)

  • Lee, Seung-Gwan;Kim, Mi-Yang;So, Won-Wook;Kang, Kyung-Seok;Kim, Kwang-Je
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.326-331
    • /
    • 2018
  • Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) anion exchange membranes, which can be used for capacitive deionization (CDI), was investigated. PPO Anion exchange polymer was prepared through bromination and amination reaction steps and crosslinked with bisphenol A diglycidylether (BADGE), m-phenylenediamine (m-PDA), and hexamethylenediamine (HMDA). The gelation time by crosslinking was short in the order of HMDA > m-PDA > BADGE. The anion exchange membranes crosslinked at room temperature over a certain amount of crosslinking agent did not dissolve in an aprotic solvent such as 1-methylpyrrolidone (NMP) and the chemical durability of their membranes to organic solvent increased. The ion exchange capacity and water uptake of anion exchange membranes crosslinked with different crosslinker (BADGE) contents were measured and compared. The CDI performance of the crosslinked PPO anion exchange membrane immersed in the HMDA solution was almost the same as that of the non - crosslinked membrane except for the initial stage of the adsorption step.

Effect of Ion Exchange Capacity on Salt Removal Rate in Membrane Capacitive Deionization Process (이온교환용량이 막 결합형 축전식 탈염공정에서 염 제거율에 미치는 영향)

  • Yun, Won Seob;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.332-339
    • /
    • 2018
  • In order to investigate the effect of ion exchange capacity of ion exchange membranes on the salt removal efficiency in the membrane capacitive deionization process, sulfosuccinic acid (SSA) as the cross linking agent was added to poly(vinyl alcohol)(PVA) and sulfonic acid-co-maleic acid (PSSA_MA) was put into PVA at different concentrations of 10, 50 and 90 wt% relative to PVA. As the content of PSSA_MA increased, the water content and ion exchange capacity increased and the salt removal efficiency was also increased in the membrane capacitive deionization process. The highest salt removal efficiency was 65.5% at 100 mg/L NaCl feed at a flow rate, 15 mL/min and adsorption, 1.4 V/5 min for PSSA_MA 90 wt%.

Screening of Zero-Valent Metal for the Removal of High Concentration PCE and 1,1,1 TCA (고농도 PCE 및 1,1,1 TCA 제거를 위한 영가금속 선정)

  • Kwon, Soo-Youl;Kim, Young
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Chlorinated aliphatic hydrocarbons (CAHs) such as tetrachloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) are the contaminants most frequently found in soil and groundwater. They have a potential to be toxic to and persistent in environment. This study is focused on selection of zero-valent metal and ores for the removal of high concentration PCE or 1,1,1-TCA and mixture of two compound. For the screening of suitable metals, we measured dechlorination rate, removal capacities and economics by using batch reactor test. This results suggest that removal rate and dechlorination of high quality iron and zinc are higher than slag and nature ores like zinc and manganese. Among nature ores, zinc ores(64% purity) have highest removal capacities. And in economics zinc ores is 10 times better than high quality metal tested. We conclude zinc ore is most suitable metal for the removal of PCE or 1,1,1-TCA.