• Title/Summary/Keyword: 탈수 효율

Search Result 144, Processing Time 0.017 seconds

A Study on the optimum drying condition of sewage sludge cake using continuous microwave full scale dryer (연속적 마이크로파 Full Scale 건조장치를 이용한 하수슬러지 케익의 최적 건조조건 연구)

  • Ha, Sang-An;Jung, Wang-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.47-56
    • /
    • 2008
  • The objective of this research is to evaluate the optimum recycling methods for the sewage sludge cakes at different microwave power-settings and for different periods of time. The dehydrated sewage sludge cakes used in this study was obtained from N wastewater treatment plan in the P City. The beginning drying processes were carried out in a microwave oven with 2,450 MHz frequency and power ranges of 1kW to 4 kW. The continuous conveyer drying system was also operated with 2,450 MHz frequency and power setting, ranging from of 1 kW to 6 kW. Initial moisture content of the sewage cake is 78~80%, and the moisture content decreased rapidly up to 0.2~2(wt%) within short periods due to breaking the cell walls. This study is also conducted to evaluate the characteristics of sewage sludge cakes with respect to important physical parameters effect on the thermal kinetics for evaporation water in the sludge which are operation times, moisture contents, drying rates, input amounts, flow rates and calorific values. It takes 60 minutes and 120 minutes to reach the critical moisture contents with power setting of 4 kW for 3kg/min and 6kg/min of the flow rates respectively. It takes 120 minutes and 110 minutes to reach the critical moisture contents with flow rates of 2.5 cm/min and sludge input of 6kg/min for the power settings of 4 kW and 6 kW respectively. The most effective value of the power for drying the sludge is 4 kW. Operation with 6kg/min and 4kW on 2cm of the sludge thickness can be effectively and inexpensively to reach the critical moisture contents, when you compare 2cm of the sludge thickness with 1cm and 3cm of the sludge thickness.

  • PDF

Effect of Activated Carbon, Orpar or Zeolite on Leaching Loss of Fenitrothion, Triadimefon and Diniconazole in Model Green of Golf Course (골프장 모형그린에서 활성탄, Orpar또는 Zeolite의 처리가 Fenitrothion, Triadimefon, Diniconazole의 용탈에 미치는 영향)

  • Oh, Sang-Sil;Koh, Yong-Ku;Chung, Jong-Bae;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • Cheju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water. Most of golf courses are located in the area which is important for the ground water recharge, and pesticides are applied to golf courses often at relatively high rates. Therefore, turf pesticides in golf course should be applied without adversely impacting ground water. In this experiment, downward movement of pesticides was monitored in model greens of golf course, where different adsorbents were layered in 3-cm thickness at 35-cm depth, and effect of the adsorption layer on the leaching loss of pesticides was investigated. Major leachings were observed in the periods of heavy rain and very limited leaching was observed under artificial irrigation. Fenitrothion and triadimefon, which have relatively short persistence and high adsorption coefficient, were found in the leachate in low concentrations only at the first rainfall event, around 20 days after the pesticide application. However, diniconazole, which has a relatively long half-life (97 days), was detected in the leachate during the whole period of experiment and concentration was much higher than those of the other pesticides. Maximum leachate concentrations were 1.9, 10.3, and 84.5 ${\mu}l^{-1}$ for fenitrothion, triadimefon, and diniconazole, respectively. Therefore, in golf course green which allows rapid water percolation and has extremely low adsorption capacity, persistence in soil could be more important factor in determination of leaching potential of pesticides. Total quantity of pesticides leached from the model green was <0.2% for fenitrothion and triadimefon and 1.8% for diniconazole. Adsorption layers significantly reduced pesticide leaching, and active carbon and Orpar were more effective than zeolite. In the model green having adsorption layer of active carbon or Orpar, leaching loss of pesticides was reduced below 0.01% of the initial application.

  • PDF

The Physical and Chemical Properties of Salt Manufactured by New Process with Brine Produced in Korean Salt-farms (염전의 함수로 제조한 천일식제조소금의 물리화학적 특성)

  • Kim, Kyeong Mi;Kim, In Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1664-1672
    • /
    • 2013
  • Solar salt is manufactured naturally, and therefore, it contains insoluble substances such as sandy compounds. This study is performed in order to effectively produce clean sea salt by removing the impurities in sea salt through filtration and evaporation in a vacuum condition. Brine was concentrated and crystallized at $90^{\circ}C$ by a rotary vacuum evaporator, which was then recovered as salt crystals by filtration, and then the salt was dehydrated. Manufacturing yields were determined by the amount of water evaporation. Brine was concentrated to 40%, 50% and 60% of the initial volume of brine and manufactured salt were designated as 40S, 50S and 60S, respectively. The salt produced by this process is called ESBS (evaporated salt with brine from salt-farm). The yield of 40S, 50S and 60S were 7.22%, 10.79% and 15.06%, respectively. The NaCl concentration of 40S and 50S were 90.38% and 91.16%, respectively. From a sensory evaluation analysis, the most tasty salt was 40S and the bitter salt was 60S. The average contents of sand compound and insoluble substances in ESBS were 0.001~0.012% and 0.067~0.12%, respectively. The mineral compositions, such as Na, Mg, K, and Ca of 40S and 50S were similar with those of the natural solar salt. In solubility tests, the solubility (g of salt/100 mL $H_2O$/sec) of 40S, 50S, and 60S was 0.69, 0.70, and 0.69, respectively. On the other hand, the solubility of natural solar salt was 0.47. By comparing the water reabsorption rate analysis results, water reabsorption rate of 40S and 50S was about 3 to 5 times lower than that of the solar salt. In the aspects of physical and chemical properties, such as minerals, impurities, solubility and moisture re-absorption rate, salts developed in this study are judged to be better than that of the general solar salt.

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.