• Title/Summary/Keyword: 탈수슬러지량

Search Result 57, Processing Time 0.019 seconds

Estimation on the Design Capacities of Residuals Treatment Facilities by the Quantity of Dewatered Sludge Generated from Water Treatment Plants (정수장에서 발생된 탈수슬러지의 량에 의한 배출수처리시설용량에 대한 평가)

  • Moon, Yong-Taik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.715-723
    • /
    • 2004
  • The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS occurs under quiescent conditions in the primary clarifier, where suspended solids are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. The relative solid and liquid fractions of a slurry are most commonly described by the solids concentration, expressed as mg/L or percent solids. The purpose of the present investigation is to estimate a suitability on the design capacities of residuals treatment facilities by the quantity of dewatered sludge generated from water treatment plants.

Air Drying Technology for Dewatered Cake from Wastewater and Waterworks Sludge (상.하수 슬러지 탈수케이크의 공기건조에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kim, Bong-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1154-1161
    • /
    • 2006
  • Air drying equipment was built as a device for reduction of dewatered cake from wastewater and waterworks sludge and to reproduce it by reusable matter. Dewatered cake was supplied into the air drying equipment which operated by air velocity of 80 m/sec, air rate 30 $m^3/min$ and air temperature of $40^{\circ}C$, and dried to produce the dried powder. The air drying equipment was composed of the air ejector which made high-speed fluid field, and cyclone which made circling fluid field. Dewatered cake was crushed at the high-speed zone as first step, and formed into dried powder of sphere shape by the collision between particles at the circling fluid zone.. Wastewater sludge with water content of 82.5 wt% was supplied 1.0 kg/min into air drying equipment and produced the dried powder which had the water content of 62.3 wt% and mass median diameter of 2.4 mm after process. At that time, it was analyzed that water removal rate was 0.1 $H_2O{\Delta}kg/min{\cdot}DS$ kg and air consumption was 170 $m^3/DS$ kg. Under same experimental conditions, when waterworks sludge was dried, water content of dried powder decrease to 47.5 wt% and mass median diameter decrease 2.1 mm and water removal rate increase 0.13 $H_2O{\Delta}kg/min{\cdot}DS$ kg. Air consumption increase 180 $m^3/DS$ kg with comparison to the results of wastewater sludge. Therefore, this technology was evaluated that drying the dewatered cake of waterworks sludge was more efficient than wastewater sludge, and also economical sludge handling technology due to drying the cake by only air.

A Study on the Biogasification of Municipal and Industrial Wastewater Sludge (도시 하수 및 공장 폐수 슬러지의 바이오가스화에 관한 연구)

  • Kim, Jahyun;Kim, Seogku;Hwang, Injoo;Ahn, Jaehwan;Kang, Sungwon;Lee, Wontae;Lim, Junhyuk;Lee, Jeakun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.5-12
    • /
    • 2014
  • Anaerobic digestion was investigated for the stabilization of sludge, decrease of volatile solids, production of biogas for wastewater sludge. In this study, total solids and volatile solids, elemental analysis were conducted to determine characteristics of various types of sludges and investigate the feasibility of biogas production of Municipal Wastewater Sludge (MWS), Industrial Wastewater Sludge (IWS), mixed sludge (Mix), and Municipal Wastewater Sludg Cake (MWSC). Total solids, volatile solids, and C/N ratio were determined in the range of 11.2~20.6 %, 62.1~83.1 % of TS and 4.96~8.33 %. Using the biochemical methane potential (BMP test), mixed sludge and wastewater sludge finished the methane production within approximately 20 day and 16~17 day. Sludge cake finished within 10 day. Mixed sludge produced 395.5 mL $CH_4$ per g of Volatile Solid (VS) and resulted in the highest methane production. For carbon dioxide production, five sludges had similar value of accumulated carbon dioxide production except for sludge cake.

A Comparative Study on Thermal and Belt Press Dewatering for Waterworks Sludge Rduction (열 탈수와 벨트프레스 탈수장치의 현장적용에 따른 탈수성 비교연구)

  • Lee, Jung-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1016-1023
    • /
    • 2006
  • The water content of dewatered cake produced from belt press dewatering equipment was about 75 wt% which was some high to handle it, so the equipment contained a limit at the economical and environmental aspect. The thermal dewatering equipment built as an alternative to overcome several problems was set up at the sludge treatment field and estimated some feasibility as comparison with the dewatering performance of belt press. First, dewatering properties of waterworks sludge was analyzed by monthly. The sludge of a water shortage season contained a high organic content which led to be difficult to dewater the cake, the other side the sludge of rainwater season was ease to dewater because of low organic content. According to the results to analysis the water content of dewatered cake produced from two equipments on the base of the seasonal dewatering properties, the water content of dewatered cake produced from thermal dewatering for sludge of water shortage season was $41.6{\sim}48.3$ wt% and $71{\sim}84$ wt% from belt press. In the case of rainwater season, the water content of dewatered cake produced from thermal dewatering was $34{\sim}37.7$ wt% and $57{\sim}70$ wt% from belt press. It was understood that thereduction of water content of cake by thermal dewatering was larger than belt press. The economical aspect for two equipments was evaluated on considering the reduction of cake treatment amount as the decrease of water content of cake. When putting the cost index of thermal dewatering into 100, belt press was 121. This meant that thermal dewater was more economical than belt press by about 20% in the side of construction and operation. In conclusion, thermal dewatering equipment was estimated by producing the low water content dewatered cake as well as being operated with low coat.

A study for High Efficiency Dewatering of Sludge Contained Fine Particles (미세입자(微細粒子)를 함유(含有)한 슬러지의 고효율(高效率) 탈수(脫水) 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.36-43
    • /
    • 2006
  • There was some difficulty dewatering properties due to small porosity diameter of cake, when pigment sludge contained fine particle was formed by cake under the dewatering. It was difficult to dewater the sludge with fine particles with the conventional mechanical dewatering method. This study was to improve the dewatering rate as discharging the water from porosity of cake easily, supplying the low heat to the cake layer. Thermal dewatering equipment of piston type to keep up constant temperature on the cake was set up and relative experiment was conducted for sludge of 200 g with fine pigment particle. As test results. filtration of 176.8 g, cake weight of 19.4 g, cake thickness of 4.2 mm was measured, and it was analyzed that the water content of cake was 47 wt% and dewatering velocity, which moaned the residual d교 sloid amount per dewatering area, was $2.1DS\;m^{2}{\cdot}cycle$. This results showed that filtration increased, cake weight and thickness decreased and dewatering velocity increased against mechanical dewatering method. And water content of cake decreased about 30%, so the result which dewatering rate improved was drew generally. The reason is that the inner vapor pressure working at the cake porosity increased as applying the low heat to the cake layer, which lead to discharge the water from porosity easily. Therefore, this study was estimated by the useful technology for sludge reduction.

Enhancement of Dewaterability of Sewage Sludge by Ultrasonification and Electric Field Treatment (초음파와 전기장 처리에 의한 하수슬러지 탈수성 향상)

  • Mo, Woojong;Han, Jisun;Ahn, Changmin;Yoon, Soonuk;Seok, Heejung;Kim, Changgyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • The sludge disposal is a major economic factor in the sewage treatment facility operation. Moreover, since the ocean dumping will be prohibited by Korean environmental law from 2013, sludge should be eliminated or sludge volumetric reduction should be performed urgently. In this study, improvement of the sewage sludge dewaterability was investigated by ultrasound and electric field treatment. Sludge was treated by a single or in combination of either the electric field or ultrasound on a pilot pretreatment facility, then it was dewatered by lab-scale filter press. The operating input energy of ultrasound device was varied from 225~1,200 kJ/L and electric field device was varied from 4.5~24 kJ/L. The water contents of dewatered sludge cake treated with ultrasound (1,200 kJ/L) and combination of ultrasound/electric field (1,224 kJ/L) were decreased 10~12% by comparing non-treated sludge. At that time, water contents were 65~66%. The combination treatment of ultrasound/electric field was effective to reduce water content of dewatered sludge cake, however, water content was not changed by a single treatment of electric field because of low energy density.

Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner (무기개량제를 이용한 하수슬러지의 탈수능 개선)

  • Nam, Se-Yong;Kim, Jeong-Ho;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.651-655
    • /
    • 2012
  • This study aimed to investigate the effect of an inorganic conditioner composed of natural inorganic materials on the dewaterbility of sewage sludge and compare the performance with those of conventional organic polymeric conditioners. A dosage of 2.0 mg inorganic conditioner/g sludge TS decreased time to filter test (TTF), specific resistance to filtration (SRF), water content of dewatered sludge cake, turbidity from 146 to 41 sec, from $8.3{\times}10^{14}$ to $2.4{\times}10^{14}$ m/kg, from 82.1 to 77.1%, from 112 to 61.1 NTU, respectively, which was compatible to the conventional cation organic polymer. An inorganic conditioner would be used in sewage sludge treatment as a suitable alternative conditioner. Regression analysis showed a strong relationship among TTF, SRF, and water content.

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment (열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가)

  • Lee, Wonbae;Park, Seyong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

Production of Biofuel Energy by High Temperature Pyrolysis of Sewage Sludge Using Microwave Heating (마이크로웨이브 가열 하수 슬러지 고온 열분해에 의한 바이오 연료 에너지 생산)

  • Jeong, Byeo Ri;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. This paper assesses the feasibility of producing fuel energy from a dewatered sewage sludge by microwave-induced pyrolysis with sludge char and graphite receptor. Both receptors produced gas, char, and tar in order from product amount. The gas produced for the sludge char receptor contained mainly hydrogen and methane with a small amount of light hydrocarbons. The graphite receptor generated higher gravimetric tar and generated higher light tar. Through the results, the product gas from the microwave processes of wet sewage sludge might be possible as a fuel energy. But the product gas has to be removed the condensable PAH tars.

Physico-Chemical Characteristics of Sewage Sludge under Electron Beam Irradiation (전자선으로 처리한 하수슬러지의 특성연구)

  • Shin, Kyung-sook;Kang, Ho;Bang, Ky-youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1225-1232
    • /
    • 2000
  • This study was carried out to define the effect of electron beam irradiation on the physico-chemical characteristics of sewage sludges. The experimental evidence showed that both pH and alkalinity of irradiated sludge were generally increased as the dose of irradiation increased. It was found that the soluble protein concentration (SPC) and soluble chemical oxygen demand (SCOD) from the sludge right after electron beam irradiation at 3kGy(kilo-joule/kg) increased 2.2 times and 10 times respectively more than those sludges without electron beam treatment. This highly solubilized organics could be resulted in a good soluble substrate for the subsequent anaerobic digestion process. The specific resistance of filtration (SRF) tests showed that sludge dewaterability under electron beam irradiation at 6kGy was found to be 8.8 times higher than that of unirradiated sludge. The sludge dewaterability seemed to be directly related to the dosage of electron beam irradiation up to 10kGy. However, the efficiency of sludge dewaterability tended to be smaller with higher applied irradiation dose. In comparing treatments by different inorganic chemical conditioner with irradiated and unirradiated sludges, it appeared that the dewaterability with irradiated sludge was approximately 4-10 times better that that of unirradiated sludge. Even electron beam treatment itself could replace the result from the sludge conditioned with inorganic chemical coagulants.

  • PDF