• Title/Summary/Keyword: 탄탈럼

Search Result 4, Processing Time 0.017 seconds

Recycling and refining of tantalum scraps by electron beam melting (전자빔용해법(溶解法)에 의한 탄탈럼 스크랩의 재활용(再活用) 및 정련(精鍊))

  • Lee, Back-Kyu;Oh, Jung-Min;Choi, Good-Sun;Kim, Hyung-Seok;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.59-65
    • /
    • 2012
  • The refining effect of tantalum by electron beam melting(EBM) process for recycling tantalum scraps was investigated in the study. The purity of the tantalum metals refined by EBM was evaluated using glow discharge mass spectrometry (GDMS). From the result of GDMS, most impurities in the tantalum metals were removed by EBM down to a few mass ppm levels. The purity of the refined tantalum scraps was improved up to 5N (99.9991%) from 4 N (99.996%) of the initial tantalum scraps. The amount of metallic impurities in the tantalum was decreased from 30 ppm to 8 ppm. In addition, the gaseous impurities in the tantalum were decreased from 470 ppm to 50 ppm. Therefore a possibility of refining method for recycling tantalum scraps by EBM process was confirmed in this study.

Separation of Tantalum from Electronic Components on Laptop Printed Circuit Board Assembly (노트북 인쇄회로기판 전자부품으로부터 탄탈럼의 분리)

  • Kwon, Seokje;Park, Seungsoo;Kim, Seongmin;Joe, Aram;Song, Youjin;Park, Poongwon;Park, Jaikoo
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The study to obtain tantalum concentration from electronic components (ECs) on Printed circuit board assembly (PCBA) of laptop was conducted. Electronic components on laptop PCBA were detached from boards by using self-developed experimental apparatus. The detached electronic components were sieved and 93.2 wt.% of tantalum capacitors were concentrated from the size interval from 2.80 mm to 6.35 mm. The tantalum capacitors were pulverized by hammer mill and electrodes (anode and cathode) were removed from the grinding products by using magnetic separators under the magnetic force of 300 Gauss. Finally, tantalum concentrate was concentrated from the magnetic separator products by using Knelson concentrator, and the maximum efficiency of 76.9% was achieved under the operating condition of bowl rotating speed of 200 rpm, and fluidizing water flowrate of 7 L/min. The grade and recovery of Ta concentrate under the condition were 81.1% and 78.8%, respectively.

Platinum complex oxide electrode catalyst for the solubilization of sewage sludge (하수슬러지 가용화 위한 백금족 복합 산화물 촉매 전극 개발)

  • Yoo, Jaemin;Kim, Hyunsook;pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.352-360
    • /
    • 2016
  • The purpose of this study was to determine the electrochemical properties develop DSA electrode for sewage sludge solubilization. Using Ir as a main catalyst, the catalyst selected for the sewage sludge solubilization durability and proceeds to functional electrode suitable for sewage sludge electrolysis experiment were obtained the following results. Less mass reduction of the sintering temperature of the main catalyst, Ir coated electrodes, the endothermic reaction zone $300^{\circ}C$ to $500^{\circ}C$, which was selected from a range of experiments. The efficiency of the catalyst results came up to $350^{\circ}C$ best. Each Binder stars (Ta, Sn, W) in this experiment was the biggest catalyst efficiency at $350^{\circ}C$. Used as a binder, $TaCl_5$, $SnCl_4$, $WCl_6$ of the Ta and without affecting the other characteristics of the main catalyst than Sn, W. For the 50% $IrO_2$ electrode is 1.4 V (vs. Ag / AgCl) in a current of about $29mA/cm^2$ was caused to evaluate the effectiveness of the electrode.

A Study on the Prevention Measures against Fire and Explosion Accidents during Splash Filling in Batch Process (회분식 공정에서 스플래쉬 필링(Splash Filling) 작업으로 인한 화재·폭발 사고 예방대책에 관한 연구)

  • Kim, Sang Ryung;Lee, Dae Jun;Kim, Jung Duk;Kim, Sang Gil;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.33-39
    • /
    • 2020
  • In general, in a batch reaction process in which products are made using flammable liquids, splash filling is used to clean the walls of the reactor by spraying flammable liquids, which are raw materials used for product, during cleaning of the reactor after work. During this process, mist of flammable liquid is generated, the lower limit of explosion is lowered, and fire·explosion may occur due to discharges caused by various types of complex charges, such as flow charge, collision charge, and ejection charge. Therefore, based on the recent accident case, to identify the risk when working in the form of splash filling with toluene in a batch process and perform an explosion impact analysis using the TNT equivalent method After that, we will analyze the accident results and suggest preventive measures such as constant purge system, improvement of cleaning method, and use of tantalum to prevent such accident.