• Title/Summary/Keyword: 탄소 포집

Search Result 114, Processing Time 0.037 seconds

Patent Trend Analysis of Carbon Capture Storage Utilization (이산화탄소 포집·저장 기술 및 활용에 대한 디자인 고찰)

  • Yoon, June;Jin-Oh, Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • In order to achieve carbon neutrality, it is necessary to commercialize and popularize carbon dioxide capture technology, so the purpose of this study is to put forward the design of public facilities suitable for public environment. In the design direction of public facilities for carbon capture and environmental purification, the application of carbon capture technology in air, the application of carbon capture and adsorption materials, and carbon reduction recycling are selected for development. In order to achieve carbon neutrality, this study develops a new concept of public facility design which is different from the existing public facilities in public space. From this point of view, it has great enlightenment significance. Public facilities adopting carbon-neutral technology are environmentally friendly public facilities that conform to the times, and can be installed in parks, roads and other spaces. With the rest of citizens and the role of communities, it is expected to contribute to popularization and activation.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

Achieving Carbon Neutrality: Technology Innovations and Research Needs in the Division of Groundwater and Soil (탄소중립 달성을 위한 지하수토양분야 혁신기술 및 선도연구 소개)

  • Jongbok Choi;Younggyu Son;Young-Soo Han;Man Jae Kwon;Seunghak Lee;Kitae Baek;Yongseok Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.spc
    • /
    • pp.40-54
    • /
    • 2023
  • 산업혁명 이후 화석연료의 광범위한 사용, 삼림 벌채, 토지사용의 변화 등과 같은 인위적 활동은 대기 중 온실가스(GHGs, greenhouse gases) 농도를 지속적으로 증가시켜 지구의 기후위기를 유발하였다. 우리나라의 경우 최근 30년 사이 평균 온도가 1.4℃ 상승하였으며, 국제사회의 일원으로 책임을 다하기 위해 2016년 11월 3일 파리협정을 비준하였다. 이에 파리협정의 목표인 산업화 이전 대비 지구 평균온도 상승을 2℃ 아래, 가능한 1.5℃ 아래로 억제하기 위해 2050년까지 CO2 순배출량을 0으로 만들어야 하며, 이를 위해 다양한 정책 마련과 함께 경제 및 사회 전반에 걸쳐 많은 노력이 경주되고 있는 실정이다. 탄소중립을 달성하기 위해서는 첫 번째로 GHGs 배출을 줄이고, 두번째로 대기에서 CO2 포집을 촉진하기 위해 현재 가동되는 다양한 산업분야의 생산 시스템을 개혁하는 것이 가장 중요한 과제로 고려되고 있다. 그동안 지하수토양 관련 연구분야에서는 지속가능성(sustainability), 복원성(resilience), 녹색성장(green growth) 등과 같은 사회적 요구에 부응하여, 녹색정화(green remediation), 자연 저감(natural attenuation), 탄소포집저장(carbon capture and sequestration), 지열발전등의 기술이 초기단계로 개발이 되고 연구가 되어 왔다. 이러한 기존 연구들은 탄소중립2050의 달성을 위해 고도화되어야하며, 추가적으로 자연 및 인위기원 탄소배출 연구, 토양의 역할을 고려한 저탄소 토지이용 기술, 광물탄산화 등의 연구 및 기술개발이 필요하다고 판단된다. 본 논문에서는 탄소중립2050의 간단한 내용과 함께, 이를 달성하기 위한 지하수토양 분야의 혁신기술 및 선도연구를 소개하였다.

Determination of carbon-14 and tritium in a PWR spent nuclear fuel (PWR 사용후핵연료 중 탄소-14 및 트리튬 정량)

  • Kim, Jung Suk;Park, Soon Dal;Lee, Chang Hun;Song, Byong Chul;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.298-308
    • /
    • 2005
  • The methods for determining C-14 and tritium contents in the spent nuclear fuel sample were developed. The carbon-14($^{14}CO_2$) released during the dissolution of the spent fuel sample and $CaCO_3$ ($CO_2$ carrier) with 8 M $HNO_3$ at $90^{\circ}C$ was collected in trap containing 1.5 M NaOH. The volatile radioactive iodine evolved when the spent fuel was dissolved, was trapped on to Ag-silicagel (Ag-impregnated silicagel) adsorbent in column which is connected to two NaOH traps. The solutions which contain tritium as HTO after fuel dissolution were decontaminated by deionization with a mixture of cation and anion exchange resins and inorganic ionexchangers. The amount of C-14 in the trap solutions and the HTO concentration in the resulting deionization water were then determined by liquid scintillation counting.

Advances of Post-combustion Carbon Capture Technology by Dry Sorbent (건식흡수제 이용 연소배가스 이산화탄소 포집기술)

  • Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.140-146
    • /
    • 2010
  • This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.

Membrane-Based Direct Air Capture: A Review (막 기반 직접공기포집: 총설)

  • Seong Baek Yang;Kwang-Seop Im;Km Nikita;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2024
  • Direct air capture (DAC) technology plays a crucial role in mitigating climate change. Reports from the International Energy Agency and climate change emphasize its significance, aiming to limit global warming to 1.5 ℃ despite continuous carbon emissions. Despite initial costs, DAC technology demonstrates potential for cost reductions through research and development, operational learning, and economies of scale. Recent advancements in high-permeance polymer membranes indicate the potential of membrane-based DAC technology. However, effective separation of CO2 from ambient air requires membranes with high selectivity and permeability to CO2. Current research is focusing on membrane optimization to enhance CO2 capture efficiency. This study underscores the importance of direct air capture, evolving cost trends, and the pivotal role of membrane development in climate change mitigation efforts. Additionally, this research delved into the theoretical background, conditions, composition, advantages, and disadvantages of permeance and selectivity in membrane-based DAC.

Geochemistry of Shallow gases taken from the core sediments in the southeastern Ulleung Basin (울릉분지 남동부 시추 퇴적물 내에 함유되어 있는 천부가스의 특성)

  • Lee Young joo;Huh Shik;Kwak Young hoon;Kim Hag ju;Chun Jong Hwa;Jun Sang Joon;Yoo Hai Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.35-40
    • /
    • 1999
  • Chemical and isotopic compositions of hydrocarbon gases were analyBed to characterize the properties of the shallow gases distributed in the southeastern part of the Ulleung Basin, offshore Korea. Sediments from the core were also analyzed to determine the characteristics and relationship to shallow gases. Hydrocarbon gases in the sediments consisted of methane (697.9-6054.4 ppm), ethane, propane, butane and hexane. The total carbon content of the sediments ranges from 1.84fe to $5.11{\%}$ and the total organic carbon content ranges from $0.29{\%} \;to\; 2.65{\%}$. High C/N ratio (>10) indicates that input of terrestrial organic matter was prevalent at the time of deposition. The methane content and stable isotopic data indicate that hydrocarbon gases from the sediments are identified to be thermogenic gas and mixture of both biogenic and thermal gases. Based on the Rock-Eval and carbon isotopic data, the level of thermal maturity of organic matter in the sediments $(Tmax<425^{\circ}C)$ is lower than that of gas. It suggests that thermal gases in the sediments migrated from the deeper sediments than the penetrated depth.

  • PDF