• Title/Summary/Keyword: 탄소 용해도

Search Result 1,258, Processing Time 0.025 seconds

Fabrication and Characterization of Porous Carbon Electrode for Electrosorption (전기흡착용 다공성 탄소전극의 제조 및 특성 분석)

  • Park, Nam-Soo;Choi, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.409-414
    • /
    • 2008
  • Porous carbon electrode for electrosorption was prepared by a wet phase inversion method. Carbon slurry that was a mixture of activated carbon powder(ACP) and PVdF solution was cast directly upon a graphite sheet by means of a casting knife. Porous carbon electrodes were fabricated by immersing the cast film in pure water as a non solvent. Physical and electrochemical properties of carbon electrodes prepared with various ACP contents(50.0, 75.0, 83.3, 87.5, 90.0 wt %). From the SEM images we can verify that the electrode was porous. The average pore sizes determined for the electrodes fabricated with various ACP contents ranged from 72.7 to 86.4 nm and the size decreased as the ACP content increased. The electrochemical properties were characterized by cyclic voltammetry(CV) method. All of the voltammograms showed typical behavior of an electric double layer charging/discharging on the carbon surface. The capacitance increased with the ACP content and the values ranged from 2.18 F/cm$^2$ for 50 wt% ACP to 4.77 F/cm$^2$ for 90 wt% ACP.

Effects of Additive Binder Contents on Electrode Properties of Carbon Anode for Fluorine Electrolysis (불소전해용 양극탄소전극의 전극특성에 미치는 첨가 결합제의 영향)

  • Ahn, Hong Joo;Oh, Han Jun;Chi, Choong Soo;Kim, Young Cheul;Ko, Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.413-421
    • /
    • 2001
  • The carbon electrodes for fluorine electrolysis were prepared from petroleum cokes containing coal tar pitch as binder and the effects of binder contents on electrode properties were investigated. The evaluations were performed by cyclic voltammogram in the 0.5 M $K_2SO_4$ solution with 1 mM $[Fe$(CN)_6$]^{3-}$/$[Fe$(CN)_6$]^{4-}$redox couple, mechanical strength, and electrochemical behaviour in molten $KF{\cdot}2HF$ electrolyte. It was revealed that the carbon anode formed with 40wt% of coal tar pitch as binder has a better electrode properties compared to those of the other carbon anode, which led to the increase in the effective internal surface area due to proper size and distribution of pores on carbon anode.

  • PDF

High dispersion of Pt electro catalysts on porous carbon nanofibers for direct methanol fuel cells

  • Sin, Dong-Yo;An, Geon-Hyeong;Lee, Do-Yeong;Lee, Eun-Hwan;Lee, Yeong-Geun;An, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.411.2-411.2
    • /
    • 2016
  • 직접 메탄올 연료전지 (DMFCs)는 친환경적이고 낮은 작동 온도로 인한 빠른 구동, 높은 에너지 밀도 등 다양한 장점을 가지고 있어 차세대 에너지 변환소자로 많은 관심을 받고 있다. 직접 메탄올 연료전지는 메탄올을 연료로 사용하며, 메탄올이 보유하고 있는 화학적 에너지를 전기 에너지로 변환하는 장치로써 음극에서는 백금 촉매로 인한 메탄올 산화반응, 양극에서는 환원 반응이 일어나며 전기화학적 구동을 하게 된다. 하지만 일산화탄소 피독으로 인한 촉매 활성 저하, 메탄올의 cross over, 백금 촉매 사용으로 인한 고비용 등의 문제점을 가지고 있다. 따라서 많은 연구자들이 백금 사용량을 줄이고 백금 촉매를 고르게 분포하기 위해 값이 저렴하고 넓은 비표면적을 갖는 탄소계 (graphite, graphene, carbon nanotube, carbon nanofiber 등) 지지체 재료를 도입하고 있다. 이 중 탄소나노섬유 (carbon nanofibers, CNFs)는 우수한 전기전도도와 열적/화학적 안정성을 가지고 있으며, 특히 넓은 비표면적을 가지고 있어 백금 촉매의 지지체로서 많은 연구가 진행되고 있다[1]. 따라서 우리는 전기방사법을 활용하여 넓은 비표면적을 보유하는 다공성 탄소나노섬유를 성공적으로 합성하였다. 또한, 이를 백금 촉매의 지지체로 도입하여 직접 메탄올 연료전지를 위한 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매를 제조하였다. 제조한 다공성 탄소나노섬유의 형상 및 구조 분석은 주사전자 현미경 (field-emission scanning electron microscopy)와 투과전자 현미경 (transmission electron microscopy)를 이용하여 분석하였고, 결정구조와 화학적 결합상태는 X-선 회절분석 (X-ray diffraction) 및 X-선 광전자 분광법 (X-ray photoelectron spectroscopy)를 이용하여 규명하였다. 전기화학적 특성은 순환 전압 전류법 (cyclic voltammetry)를 이용하였다. 이러한 실험 결과들을 바탕으로 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매의 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Characterization of field emission behavior from vitreous carbon (유리화 비정형 탄소의 전계방출 거동)

  • 안상혁;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.122-129
    • /
    • 2000
  • Field emission behavior from vitreous carbon powders deposited on Mo coated glass by electro-phoretic method was investigated. Although the vitreous carbon has only $sp^2$ hybridized carbon bond, we could observe an excellent field emission behavior. Reproducible electron emission was observed without initiation process which is known to be needed in most carbon cathode materials. Critical electric field for electron emission was in the range from 3 to 4 MV/m. The effective work function was estimated to be about 0.06 eV, as obtained from the slope of Fowler-Nordheim plot. The stability of the emission behavior characterized by repeated I-V measurements, was much superior to the Si tips. We observed the possibility of full area light emission in vitreous carbon materials. This results showed that the field emission is not intimately related to the $sp^3$ hybridization of carbon, but the electrical properties of cathod/electrode interface or the conductivity of the cathode materials which required for the electron transport to the cathode surface.

  • PDF

The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution (GEV 분포를 이용한 대구·경북 지역 일산화탄소 농도 추정)

  • Ryu, Soorack;Eom, Eunjin;Kwon, Taeyong;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.1001-1012
    • /
    • 2016
  • It is well known that air pollutants exert a bad influence on human health. According to the United Nations Environment Program, 4.3 million people die from carbon monoxide and particulate matter annually from all over the world. Carbon monoxide is a toxic gas that is the most dangerous of the gas consisting of carbon and oxygen. In this paper, we used 1 hour, 6 hours, 12 hours, and 24 hours average carbon monoxide concentration data collected between 2004 and 2013 in Daegu Gyeongbuk area. Parameters of the generalized extreme value distribution were estimated by maximum likelihood estimation and L-moments estimation. An evalution of goodness of fitness also was performed. Since the number of samples were small, L-moment estimation turned out to be suitable for parameter estimation. We also calculated 5 year, 10 year, 20 year, and 40 year return level.

Tailored biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites (생체모방 액츄에이터용 다중탄소나노튜브/고분자 나노복합체)

  • Lee, Se-Jong;Lee, Deuk-Yong;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • Biomimetic actuators that can produce soft-actuation but large force capability are of interest. Nafion, an effective ionomeric material from DuPont, has been shown to produce large deformation under low electric fields (<10V/mm). Carbon nanotube/polymer nanocomposites were cast to enhance the electromechanical properties of the composites. Multiwalled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by a solution casting to investigate the effect of M-CNT loading in the range of 0 to 7 wt% on electromechanical properties of the M-CNT/Nafion nanocomposites. The measured elastic modulus and actuation force of the M-CNT/Nafion nanocomposites are drastically different, showing larger elastic modulus and improved electromechanical coupling, from the one without M-CNT.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.