• Title/Summary/Keyword: 탄소 섬유 복합재료

Search Result 273, Processing Time 0.021 seconds

Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

Impact Behaviors of Ni-plated Carbon Fibers-reinforced Epoxy Matrix Composites (니켈도금된 탄소섬유 강화 에폭시 수지 복합재료의 충격 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • In this work, two types of Ni-plating, namely electrolytical and electroless Ni-platings on carbon fiber surfaces, were carried out to enhance the impact resistance of composites. And the comparison between electrolytical and electroless methods on their impact properties of composite system was studied. The surface properties of carbon fibers were characterized using XRD, SEM, and contact angle measurements. The impact behaviors were investigated using an Izod type impact tester. As experimental results, it was observed that electrolessly plated Ni layers had Ni-P alloys on carbon fiber surfaces as revealed by XRD, and electrolytically Ni-plated carbon fibers showed higher surface free energies than those of the electrolessly Ni-plated carbon fibers. In particular, the impact strengths of electrolessly Ni-plated carbon fibers-reinforced plastics were strongly increased. These results were probably due to the difference of wettabilities according to the different types of Ni-plating methods.

Study of Stabilization Process of PAN Precursor and its Characteristics Change by Plasma Treatment (플라즈마 처리 방법을 이용한 PAN 전구체 특성 변화 연구)

  • Kang, Hyo-Kyoung;Kim, Jung-Yeon;Kim, Hak-Yong;Choi, Yeong-Og
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Commercialized carbon fiber obtained from polyacrylonitrile(PAN) precursor is subjected to oxidation stabilization at 180 to 300℃ in air atmosphere and carbonization process at 1600℃ or lower in inert gas atmosphere. Both of these processes use a lot of time and high energy, but are essential and important for producing high-performance carbon fibers. Therefore, in recent years, an alternative stabilization technology by being assisted with various other energy sources such as plasma, electron beam and microwave which can shorten the process time and lower energy consumption has been studied. In this study, the PAN precursor was stabilized by using plasma treatment and heat treatment continuously. The morphology, structural changes, thermal and physical properties were analyzed using Field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric analysis(TGA) and Favimat.

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

Fracture Behavior of Advanced Composite Material (첨단복합소재의 파괴거동)

  • 김윤해;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.52-62
    • /
    • 1994
  • 기계나 구조물 파괴의 대부분은 노치부를 기점으로 하여 발생하기 때문에 첨단복합재료를 노지부 재로서 안전하면서도 경제적으로 사용하기 위해서는 각종 조건하에 있어서 강도특성을 명확히 하는 것은 대단히 중요하다. 본 연구에서는 노치를 갖는 복합재료를 이용하여 각종조건하에서 강도특성평가실험을 행하였으 며, 얻어진 결과를 종합하면 다음과 같다. (1) 첨단복합재료 노치재는 試驗片의 幾可學的 形狀과는 관계없이 노치반경 p만에 의해 결정되는 최대탄성응력 $\sigma_{max}$일정의 條件下에서 破t짧된다. (2) 破斷時 최소단면에서의 공칭응력 $\sigma_{c}$와 응력집중계수 $K_{t}$와의 관계에 있어서,$\sigma_{c}$의 값이 $K_{t}$의 증대와 더불어 떨어지고 있는 부분과, $K_{t}$와 관계없이 거의 일정하게 되고 있는 부분으로 나누어지는 現象은 노치재의 回轉굽힘 또는 인장압축파열에서 보여지는 현상과 外觀上 對應하고 있다. 즉, 정적파괴와 피로파괴는 파괴의 양상이 비슷하다 (3) PEN수지단체의 경우, 피로균열발생은 점발생적 피로균열이 최대탄성응력에 의해 지배되며, 노치에 만감하며,균열전파수명은전수명에 비해 상당히 짧다. (4) 단탄소섬유강화복합재료의 경우, 피로균열은 섬유端에 응력이 집중하기 때문에 일반적으로 섬유端에서 아주 빠른 시기에 발생하지만, 섬유가 피로균열진전에 대해 방해물로 작용하기때문에 아주 천천히 전파한다. (5) 短탄소鐵維는 피로균열발생에 대해서는 負의 강화작용 전수명의 극히 초기단계에 피로균열 발생을, 피로균열전파에 대해서는 正의 강화작용을 한다. (6) 단탄소섬유를 PEN에 강화함으로 인해 정적강도 보다 피로강도에 더 큰 강화효과를 초래했으며, 선형노치역학의 개녀은 첨단 복합재료의 강도평가에 대단히 유효했다.

  • PDF

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2013
  • The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites (화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성)

  • 박수진;장유신;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2001
  • The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

  • PDF

Nondestructive Interfacial Evaluation and fiber fracture Source Location of Single-Fiber/Epoxy Composite using Micromechanical Technique and Acoustic Emission (음향방출과 미세역학적시험법을 이용한 단일섬유강화 에폭시 복합재료의 비파지적 섬유파단 위치표정 및 계면물성 평가)

  • Park, Joung-Man;Kong, Jin-Woo;Kim, Dae-Sik;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.418-428
    • /
    • 2003
  • Fiber fracture is one of the dominant failure phenomena affecting the total mechanical Performance of the composites. Fiber fracture locations were measured through the conventional optical microscope and the nondestructive acoustic emission (AE) technique and then were compared together as a function of the epoxy matrix modulus and the fiber surface treatment by the electrodeposition method (ED). Interfacial shear strength (IFSS) was measured using tensile fragmentation test in combination of AE method. ED treatment of the fiber surface enlarged the number of fiber fracture locations in comparison to the untreated case. The number of fiber fracture events measured by the AE method was less than optically obtained one. However, fiber fracture locations determined by AE detection corresponded with those by optical observation with small errors. The source location of fiber breaks by AE analysis could be a nondestructive, valuable method to measure interfacial shear strength (IFSS) of matrix in non-, semi- and/or transparent polymer composites.

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.