• 제목/요약/키워드: 탄소전극

Search Result 561, Processing Time 0.029 seconds

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

Improved conductivity of transparent single-wall carbon nanotube-based thin films on glass

  • Min, Hyeong-Seop;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • 차세대 디스플레이용 전극 재료는 투명하면서도 낮은 저항값을 가져야 하는 투명 전극 재료로 금속, 금속산화물, 전도성 고분자, 탄소재료 등을 들 수 있다. 금속재료는 전도도는 우수하지만, 낮은 투과도로 투명전극 재료로 적절하지 않고, 대표적인 금속산화물 재료인 indium tin oxide (ITO)의 경우, 우수한 투과성과 낮은 면저항을 기반으로 차세대 디스플레이용 전극으로 현재 사용되고 있다. 하지만 ITO 박막은 휘거나 접을 때 기계적 안정성이 취약한 문제점을 나타내고 있다. 이러한 문제점을 극복하기 위해 전도성과 탄성계수가 높고, 저온에서 대면적 공정이 가능한 CNT을 투명 박막 전극 연구가 활발히 진행되고 있다. 하지만 투명전극 제조시, 탄소 나노튜브 간의 van der waals 인력에 의한 응집 현상으로 인한 분산의 불안정성과 분산제 사용으로 인하여 탄소 나노튜브 박막전극의 전기적, 광학적 특성이 저하를 야기한다. 이에 본 실험에서는 아크 방전 공정으로 합성한 SWCNT 분산액을 사용하여 spray coating 방법으로 glass 위에 박막을 형성하였다. SWCNT 투명 박막 전극 위에 DC sputtering을 이용하여 얇은Ni를 도포한 후, $450{\sim}500^{\circ}C$, ethylene gas 분위기의 thermal CVD방법으로 Carbon NanoFibers (CNFs)를 생성시킴과 동시에 분산제를 burning out하였다. CNF 성장 전후의 투명 박막의 전기적 특성은 four point probe를 이용하여 면저항과 UV-vis 장비를 이용하여 가시광선 영역에서의 광학적 투과도를 측정 비교하였다.

  • PDF

Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder (이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상)

  • Yeo, Jin-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

투명 전도성 전극에 대한 탄소나노튜브 네트워크 구조 특성과 전기적 특성의 상관관계

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.1-17.1
    • /
    • 2011
  • 본 연구에서는 탄소나노튜브 네트워크의 구조 변화에 따른 투명 전도성 필름의 전기적, 광학적 특성 변화를 관찰하였다. 탄소나노튜브 기반 필름의 전기적 특성은 탄소나노튜브의 직경, 길이에 큰 영향을 받을 뿐만 아니라 개별의 탄소나노튜브가 기판에 적층되어 형성되는 네트워크의 구조 변화에도 영향을 받는다. 이에 대해 본 연구에서는 분산제의 종류 및 농도에 따른 용액내 탄소나노튜브의 분산도, 산소 플라즈마 처리에 따른 기판의 표면장력, 탄소나노튜브의 정제에 따른 순도를 변화 시켰으며, 이에 따른 탄소나노튜브 네트워크 구조변화를 관찰하였다. 또한, 탄소나노튜브 네트워크의 구조변화에 따른 전기적, 광학적 특성 변화를 관찰하고, 이를 통해 탄소나노튜브 필름의 전기적 특성에 개별 탄소나노튜브간에 발생하는 접촉저항의 영향을 논의하였다.

  • PDF

Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination (아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성)

  • Lim, Jae Won;Jeong, Euigyung;Jung, Min Jung;Lee, Sang Ick;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.

Fluoride and nitrate removal in the decentralized water treatment plants by electroadsorption using carbon nano-tube electrodes (소규모 급수 시설의 불소 및 질산성질소 이온 제거를 위한 탄소나노튜브 전극을 활용한 전기흡착 연구)

  • Han, Song-Hee;Chang, In-Soung;Chae, Ki-Woong;Joung, Seun-Young;Lee, Cheol-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2904-2912
    • /
    • 2011
  • Water qualities in the decentralized water treatment plants do not frequently satisfy the water standard limit, in particular, fluoride and nitrate are notorious for the poor removal. In this study, an electro-adsorption equipped with carbon nonotube (CNT) electrodes were carried out to effectively remove the nitrate and fluoride in the decentralized water treatment plants. Two types of CNT electrodes, coating and sintering electrodes were applied. Coating electrodes were made based on different kinds of binder and sintering electrodes were made based on different sintering temperature. Removal of fluoride and nitrate when the coated electrodes with organic binder were used for electro-adsorption were 46 and 99.9% respectively, which were better performances than the coated electrodes with inorganic binder were used. On the other hand, removal of fluoride and nitrate when the electrodes sintered at higher temperature ($1,000^{\circ}C$) were 77 and 87% respectively, which were better performances than the electrodes sintered at lower temperature ($850^{\circ}C$). As a consequences, the electro-adsorption equipped with a CNT electrodes could be an potential alternative process for the removal of fluoride and nitrate in a decentralized water treatment plants if proper current density and contact time were applied.

Biosensor Electrode Manufacturing Technology Using Nano-carbon Materials (나노 탄소물질을 이용한 바이오센서 전극제조 기술)

  • Kim, Ji-Hyun;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Due to human life expectancy of the recent development of medical technology recently, it leads to increase the desire for improving the quality of human life, and grow health concerns and needs. Therefore, in order to prevent the occurrence of disease and to check up a disease quickly, research on the development of a biosensor has been actively processed. One of them, the nano-carbon materials, are very suitable for manufacturing biosensor due to their excellent electrical/mechanical properties. In this review, we introduced the recent studies about preparation methods of carbon electrodes using the carbon nano-materials for biosensors as well as its technological applications.

Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber (부타디엔 고무로 결합된 탄소반죽 바이오센서를 이용한 과산화수소의 전기화학적 정량)

  • Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.505-510
    • /
    • 2010
  • When polybutadiene dissolved in toluene was a binder of carbon powder, the volatility of solvent just after electrode fabrication assured the mechanical solidity of the carbon paste electrode. This characteristic met the qualifications for practical use of carbon paste electrodes. A new enzyme electrode bound with butadiene rubber was constructed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its electrochemical kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacitance of double layer, the time constant, the maximum current, the Michaelis constant and other factors were investigated. These experimental facts showed that butadiene rubber is a recommendable binder for practical use of a carbon paste electrode.

Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes (탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성)

  • Lee, Gi-Taek;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2005
  • Porous-composite electrodes have been developed using silica gel, which reduce carbon aerogel usage with high cost. Silica gel powder was added to the carbon aerogel to simplify the manufacturing procedure and to increase the wet-ability, the mechanical strength and the CDI efficiency. Porous composite electrodes composed of carbon aerogel and silica gel powder were prepared by paste rolling method. Carbon aerosol composite electrodes with $10\times10cm^2$ are placed face to face between spacers, and assembled the four-stage series cells for CDI process. Each stage is composed of 45 cells. Four-stage series cells (flow through cells) for CDI process are put in continuous-system reactor containing 1,000ml-NaCl solution bath of 1,000 ppm. The four-stage series cells with carbon aerogel electrodes are charged at 1.2V and are discharged at 0.001V, and then read the current. Conclusively, removal efficiencies of ions using the four-stage series cells composed of carbon aerogel composite electrodes show good removal efficiency of $99\%$ respectively.