• Title/Summary/Keyword: 탄소자원화

Search Result 108, Processing Time 0.029 seconds

Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice (토양 탄소 격리 기술 개발을 위한 바이오차 팰렛 시용에 따른 고추 생육 효과)

  • Shin, JoungDu;Choi, YoungSu;Lee, SunIl;Hong, SeungChang;Lee, JongSik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • Objective of this experiment was to evaluate the effect on pepper growth to application of biochar pellet in case of development of soil carbon sequestration technology. The treatments consisted of control as a general agricultural practice method, pellet (100% pig compost), biochar pellets with mixture ratio of pig compost (9:1, 8:2, 6:4, 4:6, 2:8) for comparison of total carbon contents, $NH_4-N$ concentrations, and total biomass in the pots applied with biochar pellets after pepper harvesting. The application rates of biochar pellet was 8.8 g/pot regardless of their mixed rates based on recommended amount of application (440 kg/10a) for pepper cultivation. For the experimental results, Total carbon contents in the treatments were low from 1.8 to 2.6 fold as compared to the control. $NH_4-N$ concentrations were not significantly different among the treatment plots as compared to the control, but $NO_3-N$ was not detected in the all treatment plots. However, total biomass was not only significantly different between the control and 2:8 (biochar : pig compost) biochar pellet application plot even if the other treatments were low. Therefore, this biochar pellet application might be further modified for soil carbon sequestration in agricultural farming practices.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.

The Composition and Physico-chemcal Characteristics of school waste in B area, Kyunggi-do (경기도 B 지역 학교폐기물의 성상 및 물리∙화학적 특성)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.70-78
    • /
    • 2008
  • In this study, the composition and physico-chemical characteristics of school waste which is located in B area, kyunggi-do was investigated. It is necessary to measure the characteristics of school waste to build the data-base for resource and recycling of waste. This school waste was composed of 12.25% of food wastes, 56.26% of papers, 9.26% of plastics&vinyls, 1.52% of textiles, 3.70% of wood, 0.11% of rubbers&leathers and others, respectively. Most of school wastes are mainly composed of paper and plastic waste and composition of combustible waste was about as 90%. From 3-components analysis, contents of moisture, combustible component, and ash was 5.72%, 88.29% and 5.98%, respectively. Moisture content was higher in Agricultural Dwelling school area compare to the urban dwelling school area. The chemical element of the school waste has the high order of carbon, oxygen, hydrogen on the dry basis of wastes and the low heating value of the MSW which is measured by calorimeter is shown as 3720.44kcal/kg.

  • PDF

Studies on the Production of Microbial Culture Medium by Using By-Product of Salt-Fermented Kanary (까나리 액젓 부산물의 미생물 배지화를 위한 연구)

  • Won, Hye-Jin;Hahm, Young-Tae;Kim, Hye-Kyung;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.202-206
    • /
    • 2000
  • Feasibility of microbial culture media using by-product of salt fermented kanary was investigated. Gram negative strain, Escherichia coli, and Gram positive strain, Bacillus subtilis, and bioluminescent Photobacterium Phosphoreum were incubated with kanary by-Product media (KB media). Compared with LB media, KB media had enough carbon source, but lacked nitrogen source and growth factor. When 0.5% of peptone as a nitrogen source and 0.3% of yeast extract as nitrogen and growth factor source were fortified in KB media, the cell population rate was similar to LB media. Also, when 0.5% of yeast extract was fortified to KB media, it showed the same result as in LB media. The price of KB media with fortification of 0.5% peptone and 0.3% yeast extract, and 0.5% of yeast extract is only 46 and 19% of that of LB media, respectively. These results showed that kanary by-Product could be a good and cheaper bacterial culture media if small amount of nitrogen source and growth factor were added.

  • PDF

The Study of Physico-chemcal Characteristics of Municipal Solid Waste (MSW) in Gangwon Area (강원지역 도시폐기물의 물리·화학적 특성 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.101-111
    • /
    • 2009
  • In this study, the physico-chemical characteristics of municipal solid waste (MWS) which was treated in gangwon area were investigated. It is necessary to measure the characteristics of municipal solid waste for build a waste treatment and RDF facility and for data-base and total managing of the landfill. It was found that the average density of solid wastes is in the range of $101.8{\sim}199.8kg/m^3$. This MSW was composed of 30.7% of food wastes, 36.3% of papers, 15.8% of plastics & vinyls, 1.9% of textiles, 3.2% of wood and 1.5% of rubber & leathers respectively. Most of MSW are composed of food, paper and plastic waste and the combustible waste is more than 90%. For three components, moisture is 44.6%, combustible component is 47.7% and ash is 7.7% respectively. The chemical elements are carbon, oxygen, and hydrogen on the dry basis of wastes. The low heating value of the MSW measured by calorimeter was obtained as 2,631 kcal/kg, and the high heating value of the MSW was obtained as 3,310 kcal/kg.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

Optimum Mixing Ratio of Bulking Agent for Garbage Composting (음식쓰레기 퇴비화시 bulking agent의 적정 첨가량 결정에 관한 연구)

  • Shin, Hang-Sik;Hwang, Eung-Ju;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • Garbage composting was studied in a controlled batch reactor with the addition of cooked rice as a biodegradable carbon source to find the effect of C/N ratio control on composting. And composting of bulking agents such as sawdust and wheat straw were tested with the addition of ammonium sulfate as a nitrogen source. As expected, biodegradation of the garbage having low C/N ratio was improved to some extent when foreign carbon was added. But bulking agents used in this study exerted slightly biodegradable carbon potential, indicating that the estimation of the dose of additional carbon considering desirable C/N ratio was not reasonable when lignocellulosic bulking material was added to garbage. It was found that the optimum moisture content increased with sawdust addition meaning the C/N ratio increment. Considering the above results, it was suggested that 78g sawdust per 100g garbage should be mixed to make C/N ratio to 25 and moisture content to 56% for effective composting of the garbage studied in this paper.

  • PDF

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.