• Title/Summary/Keyword: 탄소입자

Search Result 643, Processing Time 0.032 seconds

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor (유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구)

  • Lee, Sung-Joo;Kim, Yung-Jun;Kim, Mi-Hyun;Rim, Byung-O;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.843-847
    • /
    • 1999
  • In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4~12, 12~20, and 20~40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.

  • PDF

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion (외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석)

  • Hwang, Chan-Won;Kim, Ryang-Gyoon;Ryu, Kwang-Il;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size (에폭시 내부의 MWNT 응집 크기에 따른 복소유전율 변화의 해석적 관찰)

  • Shin, Jae-Hwan;Jang, Hong-Kyu;Choi, Won-Ho;Song, Tae-Hoon;Kim, Chun-Gon;Lee, Woo-Yong
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • This paper predicts the complex permittivity of MWNT added epoxy depending on agglomeration by numerical analysis. 1wt% MWNT added epoxy specimen is prepared using 3-roll-mill method and its complex permittivity is measured in X-band (8.2~12.4 GHz) using freespace measurement system. The analytic model is comprised of cube epoxy and perfect sphere agglomeration. The complex permittivity of the agglomeration model is predicted by complex permittivity mixing rule using the measured complex permittivity of epoxy and 1 wt% MWNT added epoxy. Commercial electromagnetic analysis software, CST, is used to obtain S-parameter of the analytic model and MATLAB code is used to calculate complex permittivity from the S-parameter. It is confirmed that the complex permittivity increases when the agglomeration size decreases.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

A Study on the Effectiveness of Remanufacturing Technology for the Catalyzed Diesel Particulate Filter-trap(DPF) Deactivated by Diesel Exhaust Gas (촉매가 담지된 사용후 경유차 매연저감장치 DPF의 재제조 효과에 관한연구)

  • Choi, Kang-Yong;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.957-964
    • /
    • 2010
  • The deactivated catalyzed diesel particulate filter-trap (DPF) was remanufactured by ultrasonic wave treatment with various prepared solutions, followed by active component re-impregnation, and the emission control performance and surface properties of remanufactured DPF were studied at various remanufacturing conditions. The proper ultrasonic wave cleaning time at various prepared solutions and optimal re-impregnation amounts of active component for the best emission control performance of DPF were investigated and its performance tests were also carried out with various temperatures for the conversions of CO, THC (total hydrocarbon) and PM (particulate matter) by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the emission control performance of DPF remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acid/base solutions and active component re-impregnation method was recovered to 95% level of its activity compared to that of the fresh DPF, which was caused by removing the deactivating materials from the surface of the DPF, through the analyses of performance test and their surface characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

Isolation and Characterization of Sulfur-oxidizing Denitrifying Bacteria Utilizing Thiosulfate as an Electron Donor (황(thiosulfate)을 이용하는 탈질 미생물의 분리 및 특성 파악)

  • Oh, Sang-Eun;Joo, Jin-Ho;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Sulfur-oxidizing bacteria were enumerated and isolated from a steady-state anaerobic master culture reactor (MCR) operated for over six months under a semi-continuous mode and nitrate-limiting conditions using thiosulfate as an electron donor. Most are Gram-negative bacteria, which have sizes up to 12 m. Strains AD1 and AD2 were isolated from the plate count agar (PCA), and strains BD1 and BD2 from the solid thiosulfate/nitrate medium. Based on the morphological, physiological, FAME and 16S rDNA sequence analyses, the two dominant strains, AD1 and AD2, were identified as Paracoccus denitrificans and Paracoccus versutus (formerly Thiobacillus versutus), respectively. From the physiological results, glucose was assimilated by both strains AD1 and AD2. Heterotrophic growth of strains AD1 and AD2 could be a more efficient way of obtaining a greater amount of biomass for use as an inoculum. Even though facultative autotrophic bacteria grow under heterotrophic conditions, autotrophic denitrification would not be reduced.

A Study on the Emission and Particulate Matter of a Heavy Duty Natural Gas Engine According to Gas Composition under certification tests (인증시험 조건에서 가스조성 변화에 따른 대형 천연가스 엔진 배기가스 및 입자상 물질 배출 특성에 관한 연구)

  • Choi, Ji-Seon;Park, Cheol-Woong;Jang, Hyoung-Jun;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.66-73
    • /
    • 2021
  • In this study, The full load test and WHTC mode test were performed to examine the effect on a heavy duty natural gas engine according to the type of standard gas for certification to check engine performance and exhaust characteristics. Two types of standard gas (Gr, G23) and commercially available natural gas were applied as the fuel used. As a result of the test results of three natural gases with different fuel compositions, G23 with a high nitrogen content was inferior in torque, fuel consumption, and thermal efficiency conditions. In addition, when evaluated in the WHTC mode it was possible to obtain a result that satisfies the EURO VI regulation. However, compared to the other two fuels, the emission characteristics of G23 decreased CO2 and CO, but increased CH4, NOx and PN emissions.

A Study on Characteristics of Polymer Organic Hard Mask Synthesis (고분자 유기하드마스크 합성에 따른 특성에 관한 연구)

  • Woo-Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.217-222
    • /
    • 2023
  • The purpose of this paper was to synthesize a polymer organic hard mask that simplifies the manufacturing process, reduces process time significantly, and thereby lowers manufacturing costs. The results of measuring residual metals through vapor refining showed that 9-Naphthalen-1-ylcarbazole(9-NC) measured 101.75ppb in the 4th zone, 2-Naphthol (2-NA) measured 306.98ppb in the 5th zone, and 9-Fluorenone(9-F) measured between 129.05ppb across the 4th and 5th zones. After passing through a filtration system, the synthesized organic hard mask measured residual metals in the range of 9 to 7ppb. Additionally, the thermal analysis indicated a decrease of 2.78%, a molecular weight of 942, carbon content of 89.74%, and a yield of 72.4%. The etching rate was measured at an average of 18.22Å/s, and the coating thickness deviation was averaged at 1.19. For particle sizes below 0.2㎛ in the organic hard mask, no particles were observed. By varying the coating speed at 1,000, 1,500, and 1,800rpm and measuring the resulting coating thickness, the shrinkage rate ranged from 17.9% to 20.8%. The coating results demonstrated excellent adhesion to SiON, and it was evident that the organic hard mask was uniformly applied.