• Title/Summary/Keyword: 탄소이온

Search Result 651, Processing Time 0.029 seconds

Preparation of RGO coated TiO2 for improved electrical conductivity (전기 전도성 향상을 위한 RGO가 코팅된 TiO2 제조)

  • Kim, Su-Deok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.192.1-192.1
    • /
    • 2016
  • 타이타늄은 밸브 메탈의 일종으로, 다양한 전해질 조건에서 양극산화되어 이산화 타이타늄($TiO_2$)을 형성한다. 이산화 타이타늄은 저렴한 가격, 풍부함, 무독성, 높은 안정성 등 다양한 장점을 지닌다. 또한 리튬 이온의 삽입/탈리 이후에도 구조적인 변화가 적은 성질과 비교적 높은 방전 전압(1.0-2.5 V vs Li/Li+)으로 인해 그래파이트를 대체할 리튬이온 전지의 전극재료로써 연구되어 왔다. 하지만 낮은 이온 및 전기 전도도로 인해 다양한 분야에서의 활용에 한계가 있어왔다. 이러한 한계 극복을 위해, 이산화 타이타늄에 전도성이 높은 탄소 계열의 물질을 코팅하는 방법이 고려되었다. 그래핀 산화물은 강한 산을 이용하여 그래파이트를 산화시킨 물질로, 많은 산소작용기를 함유하고 있어 탄소 고유의 전기전도성을 갖지 못한다. 환원 그래핀 산화물(reduced graphene oxide)는 빛, 열, 화학 작용울 통해 그래핀 옥사이드를 환원시켜 산소작용기를 없앤 물질로, 환원과정에서 전기전도성을 회복한다. 이에 본 연구에서는 이산화 타이타늄에 환원 그래핀 산화물(reduced graphene oxide)를 코팅하여 전기 전도도를 향상시키고. 이에 대한 활용 분야를 연구하고자 하였다.

  • PDF

Hydrogen ion effect on the formation of DLC thin film by negative carbon ion beam (탄소 음이온빔으로 증착되는 DLC 박막 제조에 미치는 수소 이온의 영향)

  • 한동원;김용환;최동준;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.324-329
    • /
    • 2000
  • We investigated the effect of hydrogen ion beam on the formation of DLC thin film, which is deposited on the Si substrate with negative carbon ion by $Cs^+$ ion sputtering and positive hydrogen ion by Kauffmann type ion source. The amount of hydrogen in the DLC films increased as increasing hydrogen gas flow rate from 0 sccm to 12 sccm. As increasing hydrogen flow rate, $sp^2$bonding structure increased. The reason is that the hydrogen ions have relatively high energy, although total amount of hydrogen is very small compared with that of CVD process. These results suggest that the physical energy transfer plays a dominant role on the formation of DLC film.

  • PDF

The Effect of Crystalline Type of Carbonaceous Materials on Performance of the Carbon Anode for Lithium Ion Secondary Battery (리튬이온이차전지에서 결정성 탄소재료가 탄소부극 특성에 미치는 영향)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1059-1064
    • /
    • 1998
  • We have investigated various kind of graphite and MCMB6-28 to develop carbon negative electrode for lithium ion secondary battery. The interlayer length of them was $3.358{\sim}3.363{\AA}$ and the BET specific surface area was $2.95{\sim}26.15m^2/g$. From this study, When the interlayer of them was large and the BET specific surface area was high, the electrochemical characteristics of them was very excellent. Adding 0, 3, 5, wt% of KJ-Black as conducting agent to various graphitic carbon active materials, interface resistance of electrode and electrolyte was less, but rechargeability was better at 3 wt%. At constant current charge and discharge test, discharge capacity was small according to large current.

  • PDF

Characterization of electrochemical behaviour for supercapacitor based on porous activated carbon composite with various contents of metal-organic framework(MOF) (금속유기골격체(Metal-organic Framework)의 함량에 따른 다공성 활성탄소 복합재료 기반 슈퍼커패시터의 전기화학적 거동 분석)

  • Jeong, Hyeon Taek;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1200-1207
    • /
    • 2020
  • We have fabricated the supercapacitor composed of porous activated carbon, metal-organic framework (MOF) with polymer based solid state electrolyte as a "ion gel" and characterized its electrochemical behaviour as a function of the MOF contents. The electrochemical properties of the supercapacitor were analyzed via cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test. As a results, the supercapacitor based on porous activated carbon/MOF composite showed the highest capacitance value at 0.5 wt% of MOF contents and decreased capacitance with increase MOF contents over the 0.5 wt%. Consequently, the porous activated carbon/MOF composite based supercapacitor is applicable to various aspect for energy storage device.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.