• 제목/요약/키워드: 탄소분말

검색결과 291건 처리시간 0.03초

아크릴 폐직물을 이용하여 제조한 활성탄소의 기공구조 발현 과정

  • 유소영;윤창훈;박연흠;박종래
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.489-492
    • /
    • 1998
  • 흡착 기능을 가지는 소재로서 오래 전부터 사용되어 온 활성탄소는 최근 환경에 대한 관심이 고조되면서 새삼 주목의 대상이 되고 있는 소재이다. 제품의 형태는 사용 목적에 따라 다르지만 보편화 된 것은 주로 입상 및 분말 상이다. 하지만 이러한 형태는 비표면적이 작고 기공분포가 넓은 단점 때문에 미세 오염물의 제거에는 부적합한 면이 있다[1]. (중략)

  • PDF

Bio waste 소재로부터의 마이크로 필러 추출 (Extraction of Micro Filler from Bio-waste Material)

  • 남기법;송정일
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.209-214
    • /
    • 2018
  • 본 연구에서는 친환경적이고 공급이 안정적인 소재를 찾기 위하여, Bio waste인 쌀겨와 조개 껍질에서 활용하여 마이크로 사이즈의 미세 입자를 추출하고, 추출한 입자의 크기와 형상을 분석한 후 CFRP에 첨가하여 물성의 변화를 관찰하였다. 쌀겨와 탄화 쌀겨의 주요구성성분은 탄소, 산소, 규소로 이루어졌으며 탄화과정을 거치면서 탄소와 규소의 비율이 증가함을 확인하였고, 조개 껍질 분말에서는 탄소 산소와 칼슘이 검출되었으며 이는 조개 껍질의 주요구성물질인 탄산칼슘의 영향으로 보인다. 쌀겨 분말의 면적평균은 $6.19{\mu}m$ 체적평균은 $14.77{\mu}m$으로 FE-SEM을 통하여 막대형상의 입자가 관찰되며 이는 쌀겨가 가지고 있던 껍질부분의 주름이나 표면의 털이 남아있는 형상으로 보인다. 탄화쌀겨의 분말은 면적평균은 $1.55{\mu}m$ 체적평균은 $8.20{\mu}m$ 조개 껍질 분말은 면적평균은 $2.53{\mu}m$ 체적평균은 $5.79{\mu}m$로 분석되었으며 쌀겨분말의 경우 막대(Rod)형상의 입자들이 관찰되었고, 조개 껍질 분말의 경우 판상(Plate)의 형상을 가지는 것으로 관찰되었다. CFRP에 첨가하였을 경우 첨가량에 비례하여 물성의 하락이 관찰되었는데 그 폭이 쌀겨분말의 경우가 가장 컸으며, 조개 껍질 분말의 경우 물성하락을 거의 유발하지 않음을 확인하였다.

양성자 교환막 연료전지용 탄소 복합재료 분리판 개발 (Development of Carbon Composite Bipolar Plates for PEMFC)

  • 임준우
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.222-228
    • /
    • 2019
  • 양성자 교환막 연료전지 (PEMFC) 시스템은 환경 친화적인 전력 공급원으로 많은 잠재적 용도를 가지고 있다. 탄소섬유 복합재료 분리판은 산성환경에서 내부식성이 우수하며 높은 비강도와 비강성을 갖지만, 상대적으로 낮은 전기전도도로 인하여 PEMFC의 효율을 떨어뜨린다. 본 연구에서는 분리판의 전기 저항을 감소시키기 위하여 전기 전도성 입자(흑연 분말과 카본 블랙)를 탄소-에폭시 복합재료 프리프레그에 도포하였다. 전기 저항과 기계적 특성을 기존의 시험 방법을 사용하여 측정하였으며, 개발된 탄소 복합재료 분리판의 단위 셀 성능평가를 실시하여 기존의 분리판과 비교하였다.

착체중합법으로 합성한 SrAl2O4:Eu2+ 분말의 형광특성 (Luminescence Property of SrAl2O4:Eu2+ Powder Prepared by the Polymerized Complex Method)

  • 김선혜;심광보;강은태;정덕수;김창삼
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.33-37
    • /
    • 2002
  • 착체중합법을 이용하여 $SrA1_2O_4:Eu^{2+}$ 인광체 분말을 합성하고 분말특성과 발광특성을 고상반응법으로 제조한 것과 비교하였다. 착체중합법에서는 $SrA1_2O_4:Eu^{2+}$분말이 $900^{\circ}C$에서, 고상반응법에서는 $1200^{\circ}C$에서 합성되었다. 착체중합법으로 합성한 분말은 합성온도가 낮은 만큼 크기가 약 $0.1{\mu}m$로 고상반응에 의한 것의 1/10정도였으나, 탄소가 잔류하여 모상격자의 결정도가 낮아지고 순백색이 되지 못하였다. 두 분말 모두 상온에서 520nm 부근에서 최대 발광 피크를 나타냈으나, 착체중합법으로 합성한 분말이 약간 낮은 파장대에서 최대 피크를 보였으며 피크의 반가폭은 약간 크고 강도는 크게 감소하였다. 이러한 발광 특성의 변화는 주로 입경의 차이에 의한 것이나 잔류탄소도 영향을 미친 것으로 사료되었다.

그라파이트 블록을 원료로써 재활용한 β-SiC 분말 합성 (Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source)

  • 민닷 응우옌;방정원;김수룡;김영희;정은진;황규홍;권우택
    • 자원리싸이클링
    • /
    • 제26권1호
    • /
    • pp.16-21
    • /
    • 2017
  • 본 연구는 SiC 결정 성장을 위한 원료 분말 합성법에 관한 것이다. ${\beta}-SiC$ 분말들은 높은 온도 조건(>$1400^{\circ}C$)에서 실리콘 분말과 탄소 분말의 반응에 의해서 합성 된다. 이 반응은 진공 상태(또는 Ar 가스 분위기)에서 실리콘+탄소 혼합물이 반응하고 다결정의 SiC 분말을 형성하기 충분한 횟수를 거쳐 그라파이트 도가니 안에서 진행된다. 최종 결과물의 특성들은 X-ray 회절, SEM/EDS, 입도 분석 및 ICP-OES을 통해 분석되었다. 또한, 최종 결과물의 순도는 the Korean Standard KS L 1612에 의거해서 분석했다.

질소 분위기에서 (NH4)[Al(edta)]·2H2O 착물으로부터 질화알루미늄 분말 및 휘스커의 합성 (Synthesis of Aluminum Nitride Powers and Whiskers from a (NH4)[Al(edta)]·2H2O Complex under a Flow of Nitrogen)

  • 정우식
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.272-277
    • /
    • 2002
  • 전구체로 ($NH_4)[Al(ethylenediaminetetraacetate)]{\cdot}2H_2O$ 착물을 이용한 수정된 열탄소환원질화법으로 질화알루미늄(AlN) 분말과 휘스커를 합성하였다. 이 분말은 질소분위기에서 별도의 환원용 탄소를 혼합하지 않고 1200$^{\circ}$C에서 1500$^{\circ}$C까지의 온도에서 하소시킨 다름 잔류탄소를 태워 버림으로써 얻어졌다. 이 질화과정을 Al-27 마법각 스핀 핵자기공명, 적외선 분광법 및 X-선 회절법으로 연구했다. 전구체 착물은 열분해되어 ${\rho}$-알루미나와 ${\gamma}$-알루미나로 되었다가 ${\gamma}-{\alpha}$알루미나 전이없이 AlN으로 바뀌었다. ${\gamma}$-알루미나가 AlN으로 바뀌면서 분말의 형상이 유지되는 것으로 보아 이 변환과정에서의 중간체는 알루미늄이나 aluminum suboxides와 같은 기체상이 아니고, 고체상의 $AlO_xN_y$임을 알 수 있다. (0001) 사파이어를 이용하면 AlN 휘스커를 합성할 수 있다.