• Title/Summary/Keyword: 탄소미립자

Search Result 13, Processing Time 0.018 seconds

Synthesis and magnetic properties of $Fe_3C$ fine particles ($Fe_3C$ 미립자의 제조와 자기적 특성)

  • Seo, Il-Gwon;Lee, Seung-Won;Gwon, Hyeok-Mu
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.652-660
    • /
    • 1993
  • It was investigated to obtain the relationship between magnetic properties and conditions of forming $Fe_{3}C$ single phase from acicular goethite by heat treatment under the atmosphere of CO and $N_{2}$ mixed gas. X-ray analyses, TEM and VSM measurements were imployed for the characteristics of the carbide. Acicular goethite was sinthesized under proper process parameters. $Fe_{3}C$ single phase was obtained above $550^{\circ}C$, 60min. and $Fe_{5}C_2$ was formed with $Fe_{3}C$ below that temperature. The soturation magnetization of $Fe_{3}C$ single phase was about 100emu/g regardless of the reaction temperature. The coersive force and the ratio of Mr/Ms decreased respectively from 780 to 400 Oe. and from 0.35 to 0.13 with increasing reaction temperature.

  • PDF

Development of Microbubble Flotation Technique for the Production of High Grade Coal (Microbubble Flotation에 의한 고품위(高品位) 석탄생산(石炭生産) 기술(技術) 개발(開發))

  • Han, Oh-Hyung;Park, Sin-Woong;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.44-52
    • /
    • 2012
  • The purpose of this study is to confirm the possibility of obtaining high grade coal from fixed carbon 20.68% coal. Also, the mineralogical, physical/chemical and liberation characteristics was found with the aim of decrease in ash amount, during the pre-processing of clean coal technology. In this study, batch flotation and microbubble column flotation that was appropriate for the processing of fine particles was used with the variation in kinds and quantity of frother, collector and depressant. Also grinding time, air flow rate and feeding rates were examined. As a result of batch flotation, using pulp density 20%, collector DMU-101+dodecyl amine(100 mL/ton), frother pine oil (200 mL/ton), depressant sodium silicate(1 kg/ton), obtained the result of ash rejection 81.55% and combustible recovery 70.23%. In result of microbubble column flotation, the result was ash rejection 83.85% and combustible recovery 70.42% under the condition of pulp density 5%, grinding time 5 min. collector DMU-101+DDA(100 mL/ton), frother AF65(5.4 L/ton), depressant SMP(3.5 kg/ton), wash water(360 mL/min.) and air flow rate(1,197 mL/min.).

A Study on the Rroperties of the Dusts from Ferroally Manufacture (합금철제조공정에서 발생되는 분진의 물성)

  • Shin, Kang-Ho;Song, Young-Jun;Hyun, Jong-Yeong;Cho, Young-Keun;Suh, Soon-Il;Park, Charn-Hoon;Cho, Dong-Sung
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.9-17
    • /
    • 1999
  • The study investrgated the properti es of lh$\xi$ dust~ from felToalloy manufacture, The chemical composition, composItron material, particle size and shapes of the bulk dust, sized dust and magnetically separated dust were llivestigated. As the result, we s suppose that the dust from HLgh Carbon Fenomauganesc Manufacturing Process is not sufficient as soource material of Mn because of the low Mn conteut (13.5%) aud complicated composition material The dust from Bag Filter of AOD Process is m mainly made up of $0.2~2\mu\textrm{m}$ $Mn_3O_4$ (Hausmatmite) particle in spherical shape and the Mn content is 63.1%. The dust from Cooler of AOD Process is mainly made up of coarse $Ca(OH)_2$ Mn, $Fe_yO_2$ $SiO_2$ and fine $Mn_3O_1$.

  • PDF