• Title/Summary/Keyword: 탄소나노튜브 농도

Search Result 61, Processing Time 0.031 seconds

Etching treatment of vertically aligned carbon nanotubes for the application to biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Jung, Seoung-Ho;Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.353-353
    • /
    • 2007
  • 탄소나노튜브(CNT)의 tip 부분에 존재하는 금속 촉매 입자들은 불순물로써 나노전자소자에 응용하는데 좋지 않은 영향을 미칠 수 있다. 또한, 바이오센서에서 target 바이오 물질과 반응하는 물질을 CNT에 고정시키기 위해서는 CNT-tip을 개방시키는 것이 중요하다. 본 연구에서는 성장된 CNT의 tip부분에 존재하는 금속 촉매 입자의 제거와 CNT-tip을 개방하기 위해 $HNO_3$의 농도 (20, 40, 60)와 etching 시간 (5, 10, 15, 20, 25 min)에 따라 최적의 조건을 찾는 실험을 하였다.

  • PDF

양자 시뮬레이션을 통한 나노 CNT 소자에서의 p-n 접합 특성 연구

  • Lee, Yeo-Reum;Choe, Won-Cheol
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.246-249
    • /
    • 2013
  • EDISON 나노물리 사이트에 탑재된 탄소나노튜브 FET 소자 시뮬레이션 툴을 이용하여 나노 CNT 소자에서의 p-n접합이 갖는 특성을 살펴보았다. 순방향 바이어스에서는 일반적인 p-n접합과 유사한 특성을 보이나 그 원리는 다름을 알 수 있었으며, 역방향 바이어스에서는 밴드 대 밴드 터널링에 의한 전류가 발생함을 확인하였다. 또한 이러한 역방향 바이어스 하의 전류가 도핑농도에 따라 변함을 확인하여 실제 CNT 소자의 도핑농도를 예측해볼 수 있는 가능성을 확인하였다.

  • PDF

Dispersity and Electro-Conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method (블렌딩을 이용한 폴리우레탄 그라프트 다중벽 탄소나노튜브/폴리우레탄 복합체의 전기 전도성 및 분산 특성)

  • Yun, Sung-Jin;Im, Hyun-Gu;Kim, Joo-Heon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.500-504
    • /
    • 2010
  • The PU-g-MWNTs/PU film was synthesized by simple blending method to fabricate composites which have excellent mechanical and electrical properties. PU-g-MWNTs based composite revealed much enhanced dispersity than pristine MWNTs composite because of interfacial interaction related with interfacial compatibility between polymer matrix and PU on the MWNTs surface. The electro-conductivity of composite was measured as a function of PU-g-MWNTs concentration. The results were correlated with percolation threshold theory. As a result, the critical concentration and exponent of electro-conductivity behavior was equal to 0.78 wt% and 0.945.

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

Reinforcing Polymer Nanofibers Through Incorporation of Multi-walled Carbon Nanotubes (전기방사법을 이용한 고분자 나노섬유의 합성과 다중벽 탄소나노튜브의 혼합을 통한 물리적 강도 향상)

  • Lee, Mi-Hyun;Song, Woo-Seok;Kim, Yoo-Seok;Jang, Sung-Won;Choi, Won-Chel;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • Multi-walled carbon nanotubes (MWCNTs) incorporated polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) nanofibers were synthesized using electronspinning method. Effects of polymer concentration and applied voltage on the synthesis of PAN and PMMA nanofibers were systematically investigated. The structural characterization of PAN/MWCNTs and PMMA/MWCNTs composited nanofibers synthesized as a function of the MWCNTs concentration was performed by scanning electron microscopy and transmission electron microscopy. 5 wt% MWCNTs incorporated PAN and PMMA electrospun nanofiber exhibit best strength and stiffness.

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery (실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용)

  • Kim, Chan Mi;Kim, Sun Kyung;Chang, Hankwon;Kil, Dae sup;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2018
  • Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

Ultrahigh Molecular Weight Polyethylene Hybrid Films with Functionalized-MWNT: Thermomechanical Properties, Morphology, Gas Permeability, and Optical Transparency (기능화된 탄소나노튜브를 이용한 초고분자량 폴리에틸렌 복합체 필름: 열적 기계적 성질, 모폴로지, 전기적 성질 및 기체 투과도)

  • Ko, Jeong-Ho;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • Ultra-high molecular weight polyethylene (UHMWPE)/functionalized-MWNT hybrid films were prepared by the solution intercalation method, using 4-cumylphenol-MWNT (CP-MWNT) as the functionalized-MWNT. The variation of the thermomechanical properties, morphology, gas permeability, and optical transparency of the hybrid films with CP-MWNT content in the range of 0$\sim$2.00 wt% were examined. The newly synthesized UHMWPE/functionalized-MWNT hybrid films were characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a universal tensile machine (UTM). It was found that the addition of only a small amount of functionalized-MWNT was sufficient to improve the thermomechanical properties of the UHMWPE hybrid films, with maximum enhancement being observed in the CP-MWNT loading in the range 0.50 to 1.00 wt%. The maximum enhancement in the oxygen gas barrier was also found at the functionalized MWNT content of 1.00 wt%. In this work, the thermomechanical properties and gas permeability of the hybrid films were found to be better than those of pure UHMWPE.

Use of Carbon Nanotube Electrode and Squarewave Anodic Stripping Voltammetry for the Detection of Lead Heavy Metal (납 중금속 검출을 위한 탄소나노튜브 전극 및 네모파 양극 벗김 전압전류법 이용)

  • Choi, Changkun;Seok, Jonghyuk;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.505-509
    • /
    • 2012
  • In this study, we investigate the use of new carbon nanotube paste electrode (CNPE) for promoting the detection of lead (Pb) heavy metal in the a drinkable water, which negatively affects human brain and nerve system. For the evaluations, CNPE is served as a working electrode, while sensitivity and limit of detection (LOD) of Pb are measured in DI and tap water based electrolytes using squarewave anodic stripping voltammetry (SWASV). As a result of that, in the 25~150 ppb range of $Pb^{2+}$ ions, its sensitivity and calculated LOD are $12.85\;{\mu}A/{\mu}M$ and 26 ppb in DI water based 0.1 M $H_{2}SO_{4}$ electrolyte while they are $10.36\;{\mu}A/{\mu}M$ and 38 ppb electrolytes respectively. In addition, experimentally measured LOD values of Pb are 4 ppb and 10 ppb in the two water electrolytes. The stripping of $Pb^{2+}$ ion is also controlled by surface reaction. Our experimental data are then compared with those of other already published references. With the comparison, it is proved that our electrode outperforms other electrodes in terms of the sensitivity and LOD of trace Pb metal.

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.

Fluoride and nitrate removal in the decentralized water treatment plants by electroadsorption using carbon nano-tube electrodes (소규모 급수 시설의 불소 및 질산성질소 이온 제거를 위한 탄소나노튜브 전극을 활용한 전기흡착 연구)

  • Han, Song-Hee;Chang, In-Soung;Chae, Ki-Woong;Joung, Seun-Young;Lee, Cheol-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2904-2912
    • /
    • 2011
  • Water qualities in the decentralized water treatment plants do not frequently satisfy the water standard limit, in particular, fluoride and nitrate are notorious for the poor removal. In this study, an electro-adsorption equipped with carbon nonotube (CNT) electrodes were carried out to effectively remove the nitrate and fluoride in the decentralized water treatment plants. Two types of CNT electrodes, coating and sintering electrodes were applied. Coating electrodes were made based on different kinds of binder and sintering electrodes were made based on different sintering temperature. Removal of fluoride and nitrate when the coated electrodes with organic binder were used for electro-adsorption were 46 and 99.9% respectively, which were better performances than the coated electrodes with inorganic binder were used. On the other hand, removal of fluoride and nitrate when the electrodes sintered at higher temperature ($1,000^{\circ}C$) were 77 and 87% respectively, which were better performances than the electrodes sintered at lower temperature ($850^{\circ}C$). As a consequences, the electro-adsorption equipped with a CNT electrodes could be an potential alternative process for the removal of fluoride and nitrate in a decentralized water treatment plants if proper current density and contact time were applied.