• Title/Summary/Keyword: 탄소고정

Search Result 383, Processing Time 0.026 seconds

Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance (바이오차를 혼입한 콘크리트의 물성 특성과 단열성능에 미치는 영향)

  • Kyoung-Chul, Kim;Kyung-Taek, Koh;Min-Su, Son;Gum-Sung, Ryu;Jae-Yoon, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 2022
  • This study intends to develop an eco-friendly concrete panel mixed with biochars. Experiments about mechanical and thermal properties were conducted on porous biochar concrete, which has insulation and carbon-capture performance. The concrete has a mixing ratio of 0, 5, 10, and 15 % for biochar and a water-binder ratio of 0.35. The unit weight, porosity, and permeability were measured to evaluate the mechanical characteristics. From the results, as the biochar mixing rate increased, the porosity and the permeability increased, but the unit weight decreased. Even though a decreased trend was observed in the compressive strength results, they satisfied the design standard. Since the thermal conductivity was decreased during the increase of contents, biochar could be considered an excellent material for insulation performance. In addition, regression analyses were conducted regarding the relationship of unit weight with porosity, compressive strength with thermal conductivity, and porous with thermal conductivity. From the regression, significant variables for expanding the scope of the application of biochar were presented.

Comparisons of Foliar Nutrient Concentrations and Soil Nutrient Stocks Between Restoration Areas and Adjacent Red Pine Stands in Opencast Kaolinite Mines in Sancheong-gun (산청군 고령토 광산 복원지와 인접 소나무 임분의 토양양분 저장량 및 잎 양분 농도 비교)

  • Kim, Kyung Tae;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.234-241
    • /
    • 2022
  • We performed this study to determine the foliar nutrient concentration and the nutrient stocks of restoration areas and adjacent Pinus densiflora S. et. Z. (red pine) stands in opencast kaolinite mines in Sancheong-gun, Gyeongsangnam-do, southern Korea. We chose six sites to determine foliage nutrient concentrations and the nutrient stocks of soils (0-10 cm depth). The dominant vegetation planted in restoration areas comprised Quercus acutissima Carruth., P. koraiensis S. et. Z., Festuca arundinacea Schreb., and Lespedeza cuneata G. Don. Invading vegetation in the restoration areas comprised Alnus incana (L.) Medik., Robinia pseudoacacia L., and Lespedeza spp., among others. The carbon and nitrogen stocks at 10 cm soil depth were significantly higher in the red pine stands than those in the restoration areas, whereas those of phosphorus, potassium, and magnesium were not significantly different between the two areas. However, calcium stocks were significantly higher in the restoration areas than in the red pine stands. Nitrogen concentration in foliage was higher in L. cuneata (20.28 mg N g-1) than that in F. arundinacea (5.67 mg N g-1), whereas potassium concentration was twice as high in F. arundinacea (18.8 mg K g-1) as that in L. cuneata (9.07 mg K g-1). Foliar nitrogen concentrations in invasive vegetation such as A. incana, R. pseudoacacia, and Lespedeza spp. were twice or four times higher than those of Q. acutissima and P. koraiensis. Our results indicate the development of suitable vegetation and soil amendment treatments to improve poor soil environmental conditions in restoration areas are necessary following opencast kaolinite mining.

Study of the Function of β-D-fructofuranosidase by Plant Histological Method (식물 조직학적 방법에 의한 β-D-fructofuranosidase의 기능 연구)

  • Donggiun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.587-592
    • /
    • 2023
  • Plant growth is regulated by a variety of factors, including organic matter availability. Organic nutrients are carbohydrate molecules from photosynthetic products produced by tissues associated with carbon and energy fixation called "sources". These compounds flow through plant vascular bundles into non-photosynthetic or growing tissues called "sinks". Among these possible compounds, the disaccharide fructosyl glucose, sucrose, is the most representative. During the transport of sucrose, the pathway from the source to the sinks can include hydrolysis of sucrose into glucose and fructose derivatives or direct transfer of sucrose. Among the enzymes involved in this, β-D-fructofuranosidase is the most important. Soluble neutral β-D-fructofuranosidase, one of several isoenzymes, is located in intracellular protoplasts and helps plant cells metabolize sucrose to produce energy. In order to track the activity of this enzyme during the course of plant growth, histological methods were used for the most effective immunolocalization. As a result, the activity was higher in the phloem and epidermis than in the mesophyll tissue in the leaf. In the growing stem, activity was high in the phloem, epidermis, and cortex. The activity of the root, which is a sink tissue, was high in all parts, but especially the highest in the root tip part. It is thought that this is because it helps unloading of sucrose in sink tissues that require sucrose degradation and plays a role in hydrolysising sucrose.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

Shading Treatment-Induced Changes in Physiological Characteristics of Thermopsis lupinoides (L.) Link (차광처리에 따른 갯활량나물의 생리 특성)

  • Seungju Jo;Dong-Hak Kim;Jung-Won Yoon;Eun Ju Cheong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.198-209
    • /
    • 2024
  • This study aimed to investigate the impact of light intensity, manipulated through different shading levels, on the growth and physiological responses of Thermopsis lupinoides. To assess the effects of shading treatments, we examined leaf mass per area, chlorophyll content, chlorophyll fluorescence response, and photosynthetic characteristics. T. lupinoidesexhibited adaptive responses under low light conditions (50% shading), showing increased leaf area and decreased leaf mass per area as shading levels increased. These changes indicate morpho-physiological adaptations to reduced light availability. At 50% shading, the physiological and ecological responses were favorable, with optimal photosynthetic functions including chlorophyll content, photosynthesis saturation point, photosynthetic rate, carbon fixation efficiency, stomatal conductance, transpiration rate, and water use efficiency. However, at 95% shading, the essential light conditions for growth were not met, significantly impairing photosynthetic functions. Consequently, 50% shading was determined to be the most optimal condition for T. lupinoides growth. These findings provide valuable insights for effective ex-situconservation practices and site selection for T. lupinoides, serving as foundational data for habitat restoration efforts.

Changes in Growth and Physiological Characteristics of Iris laevigata Fisch. by Shading Treatment (차광처리가 제비붓꽃의 생장 및 생리적 특성에 미치는 영향)

  • Seungju Jo;Dong-Hak Kim;Eun-Ju Cheong;Jung-Won Yoon
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • In this study, we investigated the growth and physiological responses of Iris laevigata Fisch. to shading treatments in order to suggest optimal light conditions for ex-situ conservation of the northern lineage plants. For this purpose, a control plant receiving full sunlight and different shading treatments (50%, 75%, 95%) were installed, and leaf mass per area, chlorophyll content and fluorescence response, and photosynthetic characteristics were investigated. I. laevigata developed leaves with higher photosynthetic efficiency to adapt to lower light intensity as shading levels increased. Chlorophyll content increased with increasing shading levels, and leaf mass per area decreased with increasing leaf area. The chlorophyll fluorescence responses Fv/Fm and NPQ did not change with shading, and the activity of the carbon fixation system did not differ between treatments. I. laevigata exhibited a light-saturation point equivalent to that of sun plants and maintained photosynthetic capacity similar to that of controls up to 75% shading. The apparent quantum yield of I. laevigata decreased significantly at 95% shading, indicating adaptation to lower light conditions. It seems that the photosynthetic capacity of I. laevigata decreases when grown under 95% shading level compared to full sunlight, and it is judged that the longer the light is restricted by continuous shading, the more unfavorable the growth will be.

Degradation Ability of Fungicide Myclobutanil by Several Soil Bacteria (수종(數種) 토양세균(土壤細菌)에 의한 살균제(殺菌劑) Myclobutanil의 분해력(分解力))

  • Han, Seong-Soo;Park, Pill-Jae;Jeong, Jae-Hun;Rim, Yo-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • This study was carried out to isolate some bacterial strains which had potentiality of good degrader of fungicides from herbicide free soil and to clarify degradation of a fungicide mycrobutanyl[2-p-chlorophenyl-2-(1H-1,2,4-triazole-1-ylmethyl)-hexanenitrile]. Ten strains of the gram-positive and the gram-negative bacteria were isolated and identified. Most of them vigorously proliferated at 55ppm of mycrobutanil, but the stains were not grown when more than 70ppm of this fungicide were treated Staphylococcus spp. I, Actinobacillus spp. III, and another I of the isolated bacteria degraded more than 35% of the treated mycrobutanil. These three strains could utilize mycrobutanil as nitrogen and carbon sources. Mycrobutanil was rapidly decomposed by these strains when applied once or three times. Tested bacteria gradually increased in growth when mycrobutanil was applied repeatedly. Degradation of mycrobutanil and growth of these bacteria were greater in pH 5.5, and they were high in the order of $28^{\circ}C$ > $18^{\circ}C$ > $38^{\circ}C$.

  • PDF

Chemical Fluxes at the Sediment-Water Interface Below Marine Fish Cages on the Coastal Waters off Tong-Young, South Coast of Korea (남해안 통영지역 가두리양식장 해수-퇴적물 경계면에서의 chemical fluxes)

  • Shim, Jeong-Hee;Kang, Young-Chul;Choi, Jin-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 1997
  • Benthic respiration and chemical fluxes were measured at the sediment-water interface underlying the marine fish cages floating on the open coastal waters off Tong-Young, the South Coast of Korea. The effects of cage farming on coastal benthic environment and on mass balance of organic carbon in the benthic boundary layer under the marine fish cages are addressed. In a growing season of caged fishes of June, 1995, benthic chambers and sediment traps were deployed on the sediment-water interfaces of the two sites chosen for this study: 1) Cage Site, directly underlying the fish cages of the farm at 18 m water depth, and 2) Control Site, about 100 m away from the farm at 32 m water depth. Benthic respiration rates and chemical fluxes were calculated from the evolution of dissolved oxygen and chemicals in the chamber water, and mass balance of organic carbon in the benthic boundary layer was constructed based on the vertical flux of particulate organic matter (POM) and chemical fluxes out of the sediment. High organic dumping (6400 mg C $m^{-2}d^{-1}$) and high benthic respiration (230 mmol $O_2\;m^{-2}d^{-1}$) were observed at the Cage Site. Equivalent to 40% of vertical flux of organic carbon into the Cage Site seemed to be decomposed concurrently and released back to overlying waters (2400 mg C $m^{-2}d^{-1}$). Consequently, up to 4000 mg C $m^{-2}d^{-1}$ of organic carbon could be buried into the farm sediment (equivalent to 60% of organic carbon flux into the Cage Site). At the Control Site, relatively less input of organic carbon (4000 mg C $m^{-2}d^{-1}$) and low benthic respiration rate (75 mmol $O_2\;m^{-2}d^{-1}$) were observed despite short distance away from the cages. The influence of cage farming on benthic chemical fluxes might be restricted and concentrated in the sea bottom just below the fish cages in spite of massive organic dumping and high current regime around the fish cage farm.

  • PDF

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.