• Title/Summary/Keyword: 탄성 변형

Search Result 1,453, Processing Time 0.025 seconds

Improvement of Insulation System for LNG Storage Tank Base Slab (LNG 저장탱크 바닥판 단열 시스템 개선)

  • Lee, Yong-Jin;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.141-147
    • /
    • 2010
  • Liquefied natural gas(LNG) is natural gas that has been converted temporarily to liquid form for ease of storage and transport it. Natural gas is the worlds cleanest burning fossil fuel and it has emerged as the environmentally preferred fuel of choice. In Korea, the demand of this has been increased since the first import from the Indonesia in 1986. LNG takes up about 1/600th the volume of natural gas in the gaseous state by cooling it to approximately $-162^{\circ}C(-260^{\circ}F)$. The reduction in volume therefore makes it much more cost efficient to transport and store it. Modern LNG storage tanks are typically the full containment type, which is a double-wall construction with reinforced concrete outer wall and a high-nickel steel inner tank, with extremely efficient insulation between the walls. The insulation will be installed to LNG outer tank for the isolation of cryogenic temperature. The insulation will be installed in the base slab, wall and at the roof. According to the insulation's arrangement, the different aspects of temperature transmission is shown around the outer tank. As the result of the thermal & stress analysis, by the installing cellular glass underneath the perlite concrete, the temperature difference is greatly reduced between the ambient temperature and inside of concrete wall, also reducing section force according to temperature load.

Three Dimensional Vibration Analysis of Thick, Circular and Annular Plates with Nonlinear Thickness Variation (비선형 두께 변분을 갖는 두꺼운 원형판과 환형판의 3차원적 진동해석)

  • 장승환;심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.119-129
    • /
    • 2004
  • A three dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular and annular plates with nonlinear thickness variation along the radial direction. Unlike conventional plate theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components u/sub s/, u/sub z/, and u/sub θ/ in the radial, thickness, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the s and z directions. Potential (strain) and kinetic energies of the plates are formulated, and the Ritz method is used to solve the eigenvalue problem thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the plates. Numerical results we presented for completely free, annular and circular plates with uniform linear, and quadratic variations in thickness. Comparisons are also made between results obtained from the present 3D and previously published thin plate (2D) data.

구분린 완전결정을 이용한 중성자 단색기의 원리

  • ;;;P. Mikula
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.22-22
    • /
    • 2003
  • 원자로에서 핵분열에 의해 생성된 고에너지 중성자는 감속재를 통해 열평형에 의해 에너지가 낮춰져 통계적 분포, 즉 Maxwell-Boltzman 운동에 따른 에너지 스펙트림을 갖게 된다. 중성자 산란장치는 통상 단색빔을 이용하므로 단색기(monochiomator)를 통해 이 분포에서 특정 파장의 중성자빔을 인출, 즉 단색화한다. 이때 단색기는 각각의 중성자 산란장치에 사용할 수 있는 특정 파장의 중성자빔을 인출하면서도, 파장의 퍼짐을 적절하게 조절하여 높은 중성자속(neutron flux)을 가지며 분해능도 또한 좋아야 한다. 전통적으로 많이 사용하는 단색화 방법은 결정의 내부결함을 유도하여 만든 모자익(mosaic) 결정을 이용하는 것이다. 이 방법은 특정 파장을 얻으면서도 좋은 분해능과 높은 중성자속을 갖는 모자익 결정을 만들기가 어렵고, 한번 결정된 단색기의 특성을 바꿀 수 없는 단점이 있다. 1980년대부터 몇몇 그룹이 거의 완전하게 성장된 단결정 슬랩을 미세하게 구부려서 탄성변형을 주어 effective 모자익 구조를 발생시킨 '구부린 완전결정(bent perfect crystal, BPC)' 단색기를 개발하여 특정 목적에 활용하는 시도를 하였다. BPC 단색기는 단색화된 중성자빔을 집속(focusing)할 수 있으며, 결정의 구부림 정도를 조절하고 배치 기하를 바꿈으로써 다양한 특성을 갖는 단색빔을 얻을 수 있는 장점이 있다. 이렇게 단색기의 기하학적 변수를 조절함으로써 회절빔의 집속도와 분해능을 조절할 수 있어서 잔류응력 측정이나 단결정 회절 및 집합조직 측정장치 등에 적용할 수 있다. 본 연구에서는 BPC 단색기의 원리와 여러 배치기하에 따른 빔의 특성을 소개하고자 한다.빔이 시료와 상호 작용하는 면적과 상호작용하지 않을 때의 빔을 회절모드에서 faraday cup으로 측정한 빔전류로 부터 계산하였다. Gibbsite에 대한 전자빔 조사 시 1분 이내에 급격한 Hydroxyl Ion(OH-)의 이탈로 인해 Cibbsite의 구조는 거시적 비정질화가 되며 시간증가에 따라 χ-alumina → ν-alumina → σ-alumina or δ-alumina의 순으로 상전이를 겪는다. 전자빔 조사 시 관찰된 회절자료의 가시적 변화를 통해 illumination angle 1.25mrad(Dose rate : 334 × 10³ e/sup -//sec·n㎡)일 경우 약 3초 이내에 비정질화가 시작됨을 알 수 있었고 이는 약 1 × 10/sup 6/ e/sup -//sec·n㎡ 의 전자선량에 해당되며 이를 기준으로 각각의 illumination angle에 대한 임계전자선량을 평가할 수 있었다. 실질적으로 Cibbsite와 같은 무기수화물의 직접가열실험 시 전자빔 조사에 의해 야기되는 상전이 영향을 배제하고 실험을 수행하려면 illumination angle 0.2mrad (Dose rate : 8000 e/sup -//sec·n㎡)이하로 관찰하고 기록되어야 함을 본 자료로부터 알 수 있었다.운동횟수에 의한 영향으로써 운동시간을 1일 6시간으로 설정하여, 운동횟수를 결정하기 위하여 오전, 오후에 각 3시간씩 운동시키는 방법과 오전부터 6시간동안 운동시키는 두 방법을 이용하여 품질을 비교하였다. 각 조건에 따라 운동시킨 참돔의 수분함량을 나타낸 것으로, 2회(오전 3시간, 오후 3시간)에 나누어서 운동시키기 위한 육의 수분함량은 73.37±2.02%를 나타냈으며, 1회(6시간 운

  • PDF

The role of grain boundary modifier in $BaTiO_3$ system for PTCR device ($BaTiO_3$계 PTC 재료에서 입계 modifier의 역할)

  • Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.553-561
    • /
    • 1993
  • In this study, thr effect of $Bi_2O_3$ and BN addition as grain boundary modifiers on sintering and electrical properties of semiconducting PTCR(Positive Temperature Coefficient of Resistivity) mate rial were analyzed using TMA, XRD and Complex Impedance Spectroscopy method. Bismut.h Ox~de and Boron Nitride were added to Y-doped $BaTiO_3$ respectively. Bismuth sesquioxide up to O.lmol%solubil~ ty limit of $Bi_2O_3$ in Y--$BaTiO_3$ ceramics-retarded densification and grain growth, and further addition mitigated these retardation effects. The resistivity at room temperature increased with increasing amount of $Bi_2O_3$ and thus decreased the PTCR effect, probably due to the $Bi_2O_3$ segregation on the grain boundaries. From the complex ~mpedance pattern, it is known that the grain boundary resisitivity is dominant on the whole resistivity of sample. In the result of applying the defect chemistry, $Bi^{3+} \;and \; Bi^[5+}$ are substituted for Ua and Ti site, respectively. Boron nitride decomposed and formed liquid phase among the $BaTiO_3$ grains. The decomposed com~ ponents made the second phase and existed the tr~ple juntion from the result of EPMA. From the complex impendencc pattern, the gram and grain boundary resistivity were small. The grain size increased with increasing BN contents, and decreased grain boundary resistivity enhanced the PTCR effect.

  • PDF

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures (복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

A Study on the Residual Mechanical Properties of Fiber Reinforced Concrete with High Temperature and Load (고온 및 하중에 따른 섬유보강 콘크리트의 잔존 역학적 특성에 관한 연구)

  • Kim, Young-Sun;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Gyu-Yeon;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 0.55, 0.42 and 0.35 exposed to high temperature are compared with those obtained in fiber reinforced concrete with similar characteristics ranging from 0.05% to 0.20% polypropylene (PP) fiber volume percentage. Also, factors including pre-load levels of 20% and 40% of the maximum load at room temperature are considered. Outbreak time, thermal strain, length change, and mass loss were tested to determine compressive strength, modulus of elasticity, and energy absorption capacity. From the results, in order to prevent the explosive spalling of 50 MPa grade concretes exposed to high temperature, more than 0.05 vol. % of PP fibers is needed. Also, the cross-sectional area of PP fiber can influence the residual mechanical properties and spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and brittle failure tendency.

Economic Analysis of a 5-Story RC OMRF Retrofitted with Modified Epoxy Mortar for Improving Seismic Performance (변성에폭시 모르터로 내진보강한 5층 철근콘크리트 보통모멘트골조의 경제성 분석)

  • Kang, Suk-Bong;Kwak, Jongman;Shin, Dongwoo;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.207-215
    • /
    • 2014
  • As a reinforcement material for RC members, the modified epoxy mortar has been reported one of the superior materials since the material can improve the load capacity and the seismic performance of the RC members. However, there were few experimental studies and analytical research for improving seismic performance with the material. This study is to propose an effective reinforcement plan for RC Ordinary Moment Resisting Frame (OMRF) with the evaluation of seismic performance and economic analysis. For the objective, first, the load-deflection curve of a simple beam specimen was compared with the analytical results. Second, a 5-story RC OMRF structure was designed only for gravity load and the alternatives for seismic reinforcement were suggested. Third, pushover analysis was executed for evaluation of design coefficients and seismic performance of the structures. Finally, an effective reinforcement plan was suggested based on the results of quantity take-off and economic analysis. The findings of this study can be utilized as the basic data when the modified epoxy mortar is applied to practice for improving the seismic performance of RC members.

Use of Super Elements for Efficient Analysis of Flat Plate Structures (플랫플레이트 구조물의 효율적인 해석을 위한 수퍼요소의 활용)

  • 김현수;이승재;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.439-450
    • /
    • 2003
  • Flat plate system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the effective beam width model(EBWM) in practical engineering for the analysis of flat plate structures. However, in many cases, when it is difficult to use the EBWM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure was subdivided with finer meshes. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat plate system considered in the EBWM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were performed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EBWM.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.