• Title/Summary/Keyword: 탄성판

Search Result 371, Processing Time 0.025 seconds

Analytics Study on safety and stability of 50m class Portable Prestressing Bed (50m급 이동식 긴장대의 안전성 및 안정성에 관한 해석적 연구)

  • Kim, Jong Suk;Yoon, Ki Yong;Kim, Yong Hyeog
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.182-182
    • /
    • 2011
  • 현재 국내에서 PSC 거더의 제작은 주로 포스트텐션방식을 사용하고 있다. 포스트텐션방식은 콘크리트 양생 후 긴장력을 도입하여 제작회전율이 높은 특성을 가지나 쉬스, 그라우팅, 정착장치 등이 요구되어 조립과정이 복잡하고 제작단가가 높다. 교량에 적용되는 PSC 거더를 포스트텐션방식 대신에 프리텐션방식으로 제작한다면 제작단가를 대폭 감소시킬 수 있을 것이나, 교량용 PSC 거더의 길이가 일반적으로 30~50m이므로 공장에서 제작하여 현장으로 운반하는 것은 운반비용의 상승 및 운반 가능한 크기의 제한을 받게 된다. 운반의 문제를 해결하기 위해서는 현장에서 PSC 거더를 제작하여야 하는데 현장에 긴장대를 고정식으로 설치하는 것은 제작단가의 상승으로 이어져 경제성을 잃게 된다. 따라서 현장에서 사용할 수 있도록 이동식 긴장대를 제작한다면 경제성을 갖춘 프리텐션방식의 PSC 거더 생산이 가능할 것이다. 50m급 이동식 긴장대에는 약 10MN에 이르는 매우 큰 긴장력이 가해져 이동식 긴장대가 콘크리트 양생전까지 이 긴장력을 저항하여야 한다. 본 논문에서는 유한요소 해석프로그램인 ABAQUS를 사용하여 50m급 PSC 거더를 생산할 수 있는 이동식 긴장대를 모델링하여 약 10MN에 이르는 긴장력이 가해질 때에 이동식 긴장대의 각 구성요소의 거동특성 및 하중에 대한 안전성 및 좌굴에 대한 안정성 확보 여부를 해석적으로 파악하고자 한다. 이동식 긴장대는 구성요소인 정착블럭(긴장BOX)과 중간연결블럭으로 나누어 모델링하였다. 정착블럭(긴장BOX)은 다수의 강판을 4절점 쉘요소(S4R)를 사용하여 직육면체의 BOX 형상에 내부를 보강한 단면으로 구성하였고, 중간연결블럭은 H형강 2개를 일체화한 긴장대 거더와 콘크리트 바닥판 블록이 볼트로 합성된 구조이며, H형강은 4절점 쉘요소(S4R), 바닥판블럭은 8절점솔리드요소(C3D8R)를 사용하였다. 긴장대거더와 바닥판블럭은 합성거동을 하도록 weld option을 사용하여 부분적으로 결합하였다. 정적해석결과 이동식 긴장대에 발생하는 응력은 도로교 설계기준에 SS400 강재의 허용응력 140MPa 보다 작으며 선형탄성좌굴 해석결과 가력하중의 2.22배 약 21MN의 하중이 가력되어야 전체좌굴이 발생하게 될 것으로 추정된다. 해석결과를 보아 50m급 PSC 거더를 생산할 수 있는 이동식 긴장대는 하중에 대한 안전성 및 좌굴에 대한 안정성을 확보하고 있는 것으로 판단된다.

  • PDF

Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion (선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구)

  • Jeong, Sang-Hu;Kim, Jeong-Ryeol;Shin, Jae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2017
  • This study performs a root cause analysis of the sticking that occurs in the hydraulically actuated wet type multi-disc friction clutch in a ship's diesel engine propulsion system that uses rubber elastic coupling. The fishbone method was used to study the sticking through dismantling investigation of the reduction gear and clutch, investigation of the components, and onboard system tests including nondestructive testing. The friction plate sticking is caused by the slip due to friction heat resulting from the leakage of control oil through cracks in the assembled hollow shaft. The friction plate cooling oil also leaks simultaneously through the crack, and partial sticking occurs due to the hot spots in the friction plates. These are caused by insufficient amount of cooling oil due to oil leakage.

Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave (진행파를 이용한 압전 마이크로 펌프의 설계와 해석)

  • Na, Yeong Min;Lee, Hyun Seok;Park, Jong Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.567-573
    • /
    • 2014
  • Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

A Study on the Ultimate Strength of a Ship's Plate According to Initial Deflection Pattern in used Arc-Length Method (호장증분법에 의한 선체판의 초기처짐형상에 따른 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Develop and need design application of carbon sex design concept that consider plasticity in elastic design concept until now. To Place that is representative construction of hull in this research rain deflection pattern analysis technique and grandeur increment method such as general load type increment law and displacement type increment law and Newton-Raphson method increment body law to use jointly compare. Specialty. through analysis by initial deflection pattern. examined closely carbon set conduct of place by initial deflection pattern. Applied thin plate structure which receive compressive load used ANSYS that analysis method is mediocrity finite element analysis program to save complicated conduct that effect that conduct after initial buckling and conduct after secondary buckling get in the whole construction is very big and such and grandeur increment law presumes complicated rain fan shape conduct in bifurcation point specially.

  • PDF

A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates (이방성 적층복합재 구조에서 AE 발생원 위치표정을 위한 실용적인 방법)

  • Kim, Jeong-Kon;Kang, Yong-Kyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2003
  • Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, $[0]_{32}4$) laminate confirmed the practical usefulness of the proposed method.

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Study on Mode I Fracture Toughness and FEM analysis of Carbon/Epoxy Laminates Using Acoustic Emission Signal (음향 방출 신호를 이용한 탄소/에폭시 적층판의 Mode I 파괴 인성 및 유한요소해석에 관한 연구)

  • Cho, Hyun-jun;Jeon, Min-Hyeok;No, Hae-Ri;Kim, In-Gul
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Composite materials have been used in aerospace industry and many applications because of many advantages such as specific strength and stiffness and corrosion resistance etc. However, it is vulnerable to impacts, these impact lead to formation of cracks in composite laminate and failure of structures. In this paper, we analyzed Mode I fracture toughness of Carbon/Epoxy laminates using acoustic emission signal. DCB test was carried out to analyze Mode I failure characterization of Carbon/Epoxy laminates, and AE sensor was attached to measure AE signal induced by failure of specimen. Fracture toughness was calculated using cumulative AE energy and measured crack length using camera. The calculated fracture toughness was applied in FE model and the result of FE analysis compared with DCB test results. The results show good agreement with between FEM and DCB test results.

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Development of Bond Strength Model for FRP Plates Using Back-Propagation Algorithm (역전파 학습 알고리즘을 이용한 콘크리트와 부착된 FRP 판의 부착강도 모델 개발)

  • Park, Do-Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 2006
  • In order to catch out such Bond Strength, the preceding researchers had ever examined the Bond Strength of FRP Plate through their experimentations by setting up of various fluent. However, since the experiment for research on such Bond Strength takes much of expenditure for equipment structure and time-consuming, also difficult to carry out, it is conducting limitedly. This Study purposes to develop the most suitable Artificial Neural Network Model by application of various Neural Network Model and Algorithm to the adhering experiment data of the preceding researchers. Output Layer of Artificial Neural Network Model, and Input Layer of Bond Strength were performed the learning by selection as the variable of the thickness, width, adhered length, the modulus of elasticity, tensile strength, and the compressive strength of concrete, tensile strength, width, respectively. The developed Artificial Neural Network Model has applied Back-Propagation, and its error was learnt to be converged within the range of 0.001. Besides, the process for generalization has dissolved the problem of Over-Fitting in the way of more generalized method by introduction of Bayesian Technique. The verification on the developed Model was executed by comparison with the resulted value of Bond Strength made by the other preceding researchers which was never been utilized to the learning as yet.