• 제목/요약/키워드: 탄성파 복소분석

검색결과 11건 처리시간 0.016초

파동방정식 수치해의 일관성에 관한 연구 (A Study on Consistency of Numerical Solutions for Wave Equation)

  • 편석준;박윤희
    • 지구물리와물리탐사
    • /
    • 제19권3호
    • /
    • pp.136-144
    • /
    • 2016
  • 탄성파 자료의 역산은 파동방정식에 기초하고 있으므로 파동방정식의 해를 정확하게 구하는 것이 가장 중요하다. 특히, 전파형역산은 파동장 전체를 이용하기 때문에 정문제에 해당하는 모델링이 정확하게 이루어져야 신뢰할 수 있는 결과를 얻게 된다. 파동방정식의 수치해를 구하는 대표적인 기법인 유한차분법과 유한요소법은 해의 수렴성을 보장할 수 있어야 하는데, 해의 수렴성은 이론적으로 일반화된 증명이 되어 있으나 실제 문제에 적용할 경우 일관성과 안정성을 분석해야 한다. 모델링 결과의 일관성은 송신원 함수의 구현이 매우 중요한 부분인데, 유한차분법은 디랙 델타 함수(Dirac delta function)를 나타낼 때 격자 간격으로 표준화된 싱크 함수(sinc function)를 사용해야 하는 반면 유한요소법은 격자 간격에 관계없이 기저함수 값을 사용하면 된다. 주파수 영역 파동방정식을 사용할 경우 송신 파형 함수의 스펙트럼을 정확하게 표현하기 위해 샘플링 이론으로 정의되는 시간 간격보다 더 조밀한 샘플링 간격을 사용하고 나이퀴스트(Nyquist) 주파수보다 더 높은 주파수를 최대 주파수로 사용해야 한다. 또한, 복소 각주파수를 사용하는 경우 감쇠 파동방정식을 만족하기 위해서는 송신 파형 함수를 먼저 감쇠한 후 사용해야 한다. 이러한 요건들이 모두 만족되었을 때 신뢰할 수 있는 역산 알고리즘 개발이 가능하다.