• Title/Summary/Keyword: 탄성영상

Search Result 219, Processing Time 0.028 seconds

Stress Intensity Factor Measurement of Inclined Crack in Tensile Plates by Use of Photoelasticity (광탄성법을 이용한 인장판의 경사균열 응력확대계수 측정)

  • Baek, Tae-Hyun;Lee, Chun-Tae;Kim, Young-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • This paper presents the measurement of stress intensity factors of inclined cracks by use of photoelasticity. The distributions of isochromatics near a crack tip of the specimen loaded by uniaxially tensile load are used for analysis. Accuracy and reliability is enhanced by twice multiplying and sharpening the measured isochromatics using digital image processing. Photoelastic results are compared with those obtained by finite element method. Good agreement between them shows that the photoelastic analysis is reliable.

A Study on Correlation between Heterogeneity Index and Mechanical Properties of Igneous Rocks using 3D X-ray Computed Tomography Image (3차원 X-ray CT 영상을 이용한 화성암 불균질 지수와 역학적 특성과의 상관관계에 대한 연구)

  • Jeong, Yeon Jong;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.333-342
    • /
    • 2017
  • In this study, the heterogeneity of internal structure of various igneous rocks acquired in Korea was quantified and correlated with the seismic velocity and the point load strength. Three-dimensional X-ray Computed Tomography (CT) was used to obtain information on the internal structure of the rock specimen, and the representative unit length (LR) was calculated by applying a statistical technique to the CT images. We also proposed an estimation equation to predict the mechanical properties of rocks from the relationship between LR, acoustic velocity and point load strength. In the proposed method, it is shown that the characterization of internal structure of rocks could be utilized as an indirect index to account for the mechanical behavior of rocks by substituting physical laboratory testing for non-destructive test.

An Improved Object Detection Method using Hausdorff Distance based on Elastic Deformation Energy (탄성변형 에너지 기반 Hausdorff 거리를 이용한 개선된 객체검출)

  • Won, Bo-Whan;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.71-76
    • /
    • 2007
  • Object detection process which makes decision on the existence of meaningful objects in a given image is a crucial part of image recognition in computer vision system. Hausdorff distance metric has been used in object detection and shows good results in applications such as face recognition. It defines the dissimilarity between two sets of points and is used to find the object that is most similar to the given model. This paper proposes a Hausdorff distance based detection method that uses directional information of points to improve detection accuracy when the sets of points are derived from edge extraction as is in usual cases. In this method, elastic energy needed to make two directional points coincident is used as a measure of similarity.

  • PDF

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

Reverse-time Migration using Surface-related Multiples (자유면 기인 겹반사파를 이용한 거꿀시간 참반사 보정)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • In the traditional seismic processing, multiple reflections are treated as noise and therefore they are eliminated during data processing. Recently, however, many studies have begun to consider multiples as signals rather than noise for seismic imaging. Multiple reflections can illuminate an area where primary reflections are not able to cover, thus it is allowed that a smaller number of shots and receivers are used for imaging large areas. In order to verify this, surface-related multiples were used for reverse-time migration (RTM), and then we compared the results with conventional RTM images which are generated from primary reflections. To utilize multiples, we separated multiples from whole seismic data using surface-related multiple elimination (SRME) method. Numerical examples confirmed that the migration using multiples can image wider area than the conventional migration, particularly in the shallow subsurface layers. In addition, the migration of multiples could eliminate the acquisition footprints.

Imaging Findings of Nodular Fasciitis in Breast including Artificial Intelligence Mammography and Shear Wave Elastography: A Case Report (유방의 결절성 근막염의 인공지능 유방촬영술과 탄성초음파를 포함한 영상 소견: 증례 보고)

  • So Hyeong Park;Ji Yeon Park;Mee Joo;Jae Il Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1397-1402
    • /
    • 2023
  • Nodular fasciitis is a benign fibroblastic proliferation rarely reported in the breast. We report the case of a 55-year-old woman who presented with imaging findings that resembled a malignancy. Mammography revealed an isodense nodule with partially indistinct margin in the right breast, showing the abnormality score 75% on artificial intelligence. Ultrasonography revealed an oval hypoechoic nodule with microlobulated margin, echogenic halo, increased blood flow, and soft elasticity. After core needle biopsy and excision, nodular fasciitis was diagnosed. Although nodular fasciitis of the breast is rare, it may mimic malignancy; therefore, it should be considered as a differential diagnosis to prevent unnecessary intervention.

Comparison of Shear Wave Elastography and Pathologic Results Using BI - RADS Category for Breast Mass (유방종괴에 대한 BI-RADS범주를 이용한 횡탄성 초음파와 병리결과 비교분석)

  • An, Hyun;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.217-223
    • /
    • 2018
  • This study to search the diagnostic performance of shear wave elastography(SWE) in breast mass and to compare the biopsy result and stiffness obtained from shear wave elastography. Diagnostic breast ultrasonography and SWE were targeted for 157 patients who had breast ultrasonography was diagnosed mass from June 2017 to September 2017. Pathology results of 157 patients showed a benign 92 patients(Age, $44.54{\pm}11.84$) and a malignancy 65 patients(Age, $51.55{\pm}10.54$). Final evaluation, biopsy result, and quantitative SWE result were obtained and compared with each other according to Breast Imaging Reporting and Data System(BI-RADS) of diagnostic breast ultrasonography. Quantitative SWE value and pathologic result showed the highest diagnostic specificity of 83.70% in Emean and sensitivity of 89.23% in Emin. Quantitative SWE result and biopsy result is statistically significant.(p=0.000). The optimal cut-off value for malignant lesions was 66.3 kPa and 63.7 kPa, respectively, for the sensitivity, specificity, high maximum mean elasticity value(Emax) and mean elasticity value(Emean) and this showed the highest diagnostic area under the ROC curve(Az) value compared to other SWE measurement(p=0.000). The addition of SWE to conventional US in breast mass make a increase diagnostic specificity and reduce unnecessary biopsy. Therefore, it is expected that it will be helpful to analyze the breast mass using the above analysis and apparatus.

An Introduction to Time-lapse Seismic Reservoir Monitoring (시간경과 탄성파 저류층 모니터링 개론)

  • Nam, Myung-Jin;Kim, Won-Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.203-213
    • /
    • 2011
  • Time-lapse seismic surveys make repeated seismic surveys at different stages of oil production of a hydrocarbon reservoir to monitor changes in reservoir like fluid saturation. Since the repeatable surface seismic measurements can identify fluid types and map fluid saturations, oil and gas companies can make much more informed decision during not only production but also drilling and development. If time-lapse seismic surveys compare 3D seismic surveys, the time-lapse surveys are widely called as 4D seismic. A meaningful time-lapse interpretation is based on the repeatability of seismic surveys, which mainly depends on improved positioning and reduced noise (if surveys were designed properly through a feasibility study). The time-lapse interpretation can help oil and gas companies to maximize oil and gas recovery. This paper discusses about time-lapse seismic surveys mainly focused on feasibility, repeatability, data processing and interpretation.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

A Study on the Stiffness Estimation in Soft Tissue Using Speckle Brightness Variance Tracking (초음파 의료영상에서 스페클의 시간적 밝기 변화를 이용한 연조직의 stiffness를 추정하는 방법에 대한 연구)

  • 안동기;박정만;권성재;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2003
  • This paper proposes a method of measuring and imaging the stiffness of human soft tissue to diagnose cancers or tumors which have been difficult to detect in ultrasound B-mode imaging systems. To measure the soft tissue stiffness, sinusoidal vibrations are applied to it, and the magnitude of its mechanical vibration is determined by estimating the temporal variation of speckle pattern brightness in ultrasound B-mode images. It is verified by simulation and experiment that the proposed method can estimate the relative tissue stiffness from B-mode images with a relatively small amount of computation.