• Title/Summary/Keyword: 탄성안정

Search Result 568, Processing Time 0.025 seconds

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

On the isostasy and effective elastic thicness of the lithosphere in southern prt of the Korean Peninsula (한반도 남부 지각평형과 암석권의 유효탄성두께)

  • Choi, Kwang-Sun;Kim, Jeong-Hee;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.293-303
    • /
    • 2002
  • Applying elastic plate model, we estimated elastic thickness and rigidity of the lithosphere in southern part of the Korean Peninsula($332km{\times}332km$ area of which center is $36.5^{\circ}N$ in latitude and $127.5^{\circ}E$ in longitude) by analysing terrain data and gravity data measured up to 2002. We tried to exclude the East Sea in choosing the study area because it has different tectonic environment. The mean Moho depth was estimated to be 30 km by power spectrum analysis of gravity data in the study area, Assuming one layer crust and applying elastic plate model, the loads with wavelengths of greater than 300 km are locally compensated, loads with wavelengths in the range 80-300km are partially supported by the strength of the lithosphere, and loads with wavelengths of less than 80km are almost completely supported by lithospheric strength. Assuming crustal model and rigidity, we calculated predicted coherence and compared it with observed coherence. As a result, we wert able to estimate the effective elastic thickness to be of 15 km(corresponding flexural rigidity is $3.0{\times}10^{22}Nm$). This indicates that the crust of the study area is relatively weaker than other old and stable continental regions but is similar to continental margins or oceanic area. The low rigidity could be explained by many tectonic and thermal activities such as orogenic activities, magmatic intrusions, volcanic activities, foldings, faultings, etc.

  • PDF

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

Changes of Functional Performance Ability in Stroke Patients by Exercise Types I : Analysis of Lower Extremity Muscle Activity during Walking (운동유형별 뇌졸중 환자의 기능적 수행능력 변화 I : 보행시 하지근육 활성도 분석)

  • Park, Sung-Hyun;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • The purpose of this study was to compare and analyze the effects of exercise types on lower extremity muscle activity in stroke patients. For the purpose, the subjects of this study were classified into three groups such as therapeutic exercise group(n=7), elastic band group(n=7), and stretch reflex group(n=7). The three exercise programs were 5 times a week for 8 weeks. The stretch reflex group revealed higher in iliopsoas and biceps femoris %MVIC than the therapeutic exercise group and elastic band group, whereas elastic band group revealed lower in tibialis anterior %MVIC than therapeutic exercise group in the primary single-limb support. The stretch reflex group revealed higher in iliopsoas %MVIC than the therapeutic exercise group and elastic band group, whereas stretch reflex group revealed lower in medial gastrocnemius %MVIC than therapeutic exercise group in the secondary double support phase.

Analytical Study on Equivalent Shear Modulus according to Shape of Egg-box Core (에그-박스 코어 형상 변화에 따른 등가 전단 탄성계수 수치 해석 연구)

  • Lee, SangYoun;Yun, Su-Jin;Park, DongChang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • The sandwich shell with Egg-box core has been used for the combustion chamber case of air breathing propulsion system. The alteration on pitch length and thickness of Egg-box core was required to be lighter and save manufacturing time and cost of combustion chamber case. In this paper, the finite element analysis method which simulated bending test was used to predict the equivalent shear modulus which affect structural stability of sandwich shell in short time. The result of FE calculation on sandwich panel with homogeneous material, H130-foam core, showed a good agreement with the values available in the reference. The equivalent shear modulus of Egg-box core according to the variation of pitch length and thickness can be obtained.

Realistic Cloth Simulation using Plastic Deformation (소성변형특성을 이용한 사실적인 직물 시뮬레이션)

  • Oh Dong-Hoon;Jung Moon-Ryul;Song Chang-Geun;Lee Jong-Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.3
    • /
    • pp.208-217
    • /
    • 2006
  • This paper presents a cloth simulation technique that implements plastic deformation. Plasticity is the property that material does not restore completely to the original state once deformed, in contrast to elasticity. We model cloth using a particle model, and posit two kinds of connections between particles, i.e. the sequential connections between immediate neighbors, and the interlaced connections between every other neighbors. The sequential connections represent the compression and tension of cloth, and the interlaced connections the bending in cloth. The sequential connections are modeled by elastic springs, and the interlaced connections by elastic or plastic spring depending on the amount of the current deformation of the connections. Our model is obtained by adding plastic springs to the existing elastic particle model of cloth. Using the new model, we have been able to simulate bending wrinkles, permanently deformed wrinkles, and small wrinkles widely distributed over cloth. When constructing elastic and plastic spring models for sequential and interlaced connections, we took pain to prevent the stiffness matrix of the whole cloth system from being indefinite, in order to help achieve physical stability of the cloth motion equation and to improve the effectiveness of the numerical method.

In-plane Inelastic Buckling Strength of Parabolic Arch Ribs Subjected Distributed Loading Along the Axis (아치 리브를 따라 작용하는 등분포 하중을 받는 포물선 아치 리브의 비탄성 면내좌굴 강도)

  • Yoon, Ki-Yong;Moon, Ji-Ho;Kim, Sung-Hoon;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.55-62
    • /
    • 2005
  • Parabolic arch ribs are widely used in practical. In case of circular arch ribs. Inelastic in-plane buckling behaviors were investigated by Trahair(1996). Recently Yong-lin Pi & Bradford(2004) investigated about in-plane design equation for circular arch ribs. In $1970{\sim}1980$. In-plane buckling strength about parabolic arch ribs were studied by some japan researchers (Sinke, Kuranishi). Study results of Sinke & kuranishi are only valid for rise-span ratio $0.1{\sim}0.2$. In this paper. The researchers investigated about in-plane inelastic buckling behaviors of parabolic arch ribs having rise-span ratio from 0.1 to 0.4. From the results. When the rise-span ratio increase, flexural moments increase and influence of axial force to in-plane buckling strength decrease. Finally, buckling curves for parabolic arch ribs subjected distributed loading along the axis were suggested.

Transient coupled thermoelastic analysis by finite element method (유한요소법에 의한 과도연성 열탄성 해석)

  • 이태원;심우진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1408-1416
    • /
    • 1990
  • A powerful and efficient method for finding approximate solutions to initial-boundary-value problems in the transient coupled thermoelasticity is formulated in time domain using the finite element technique with time-marching strategy. The final system equations can be derived by the Guritin's variational principle using the definition of convolution integral. But, the finite element formulation for the equations of motion is modified by differentiating in time. Numerical results to some test problems are compared with analytical and other sophisticated approximate solutions. Stable responces are observed in all the given examples irrespective of incremental time steps and mesh shapes. In addition, it is shown that good numerical results are obtained even in coarser mesh or larger time step comparing to other numerical methods.