• Title/Summary/Keyword: 탄성수치해석

Search Result 708, Processing Time 0.024 seconds

Evaluation of Shallow Foundation Behavior on Basalt Rock Layers With Clinker and Sediment Layers Reinforced Using Cement Grouting (현무암층 사이에 존재하는 클링커층과 퇴적층의 시멘트 그라우팅 보강에 따른 얕은 기초 거동 평가)

  • Lee, Kicheol;Shin, Hyunkang;Jung, Hyuksang;Kim, Donghoon;Ryu, Yongsun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Clinker layer is a stratum structure distributed in volcanic area such as Jeju Island. The clinker layers were formed in between the repetitive action of eruption and solidification of lava flows. Since the clinker layer contains a large amount of voids accompanied by the lava gas ejection process, there is a possibility of inducing overall stability of the ground due to the low stiffness and strength of the clinker layer. Therefore, in this study, site investigation was carried out at both ends of the 00 bridge where the clinker layers exist. And, based on the ground survey results, the behavior of shallow foundations was analyzed numerically. In addition, the improved shallow foundation behavior in grouting substitution using the chemical injection method of the clinker layer was compared with the shallow foundation behavior in the ground, and the grouting substitution efficiency of each layer was analyzed. As a result, the bearing capacity, the replacement efficiency and elastic settlement were different according to the presence or absence of the sediment layer. This is because the sediment layer has a lower stiffness and density than the clinker layer.

Numerical Study on the Stress-distribution Ratio of Grouting Pile for Reinforced Ground (지반보강용 그라우팅 말뚝의 응력분담비에 대한 수치해석적 연구)

  • Yi, Gyeong-Ju;Lee, Joon-Kyu;Zhang Weiwei;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • Underground structures, such as compacted sand piles applied as soft ground countermeasures, are analyzed for settlement and stability by the composite ground design method. The basic principle of the composite ground design method is the arching effect. The reinforcing effect of the pile is evaluated as the stress-distribution ratio. When applying grouting piles with elastic properties using the ground reinforcement method, the existing stress-distribution ratio was only considered when the pile was installed. This study shows that the method of applying the stress-distribution ratio applied in previous studies should be changed when the ground reinforcement pile is installed at an arbitrary location in the ground without raising it to the ground surface. When high strength jet routing is applied, the stress-distribution ratio (n) to the in-situ ground generally ranges from 30 to 50. However, if the pile is located far from the surface and the depth goes down to the boundary depth of the stress sphere, the stress-distribution effect rapidly decreases, and the stress-distribution ratio converges to 1.5.

Modification of SPT-Uphole Method using Two Component Surface Geophones (2방향 지표면 속도계를 활용한 SPT-업홀 기법 개선 연구)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.109-120
    • /
    • 2006
  • SPT-Uphole test is a seismic field test using receivers on ground surface and a SPT (Standard penetration test) source in depth. Even though this method is simple and economic, it makes hesitate to apply in real field that it is difficult to obtain reliable travel time information of shear wave because of the characteristics of SPT impact source. To overcome this shortcoming, in this paper, modified SPT-Uphole method using two component surface geophones was suggested. Numerical analysis was performed using finite element method for understanding the characteristics of surface motion induced by in-depth vertical source, and comparison study of the various methods which determine the travel time information in SPT-Uphole method was performed. In result, it is thought that the most reasonable method is using the first local maximum point of the root mean square value signals of vertical and horizontal component in time domain. Finally, modified SPT-Uphole method using two component surface geophones was performed at the site, and the applicability in field was verified by comparing wave velocity profiles determined by the SPT-Uphole method with the profiles determined by SASW method and SPT-N values.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.

A Study on Shape Optimization of Plane Truss Structures (평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 구연(究研))

  • Lee, Gyu won;Byun, Keun Joo;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.49-59
    • /
    • 1985
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the Cross sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures which can eliminate the above mentioned limitations, is developed in this study. The algorithm developed utilizes the two-phases technique. In the first phase, the cross sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Raphson method. In the second phase, the geometric shape is optimized utilizing the unidirctional search technique of the Rosenbrock method which make it possible to minimize only the objective function. The algorithm developed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examme its applicability and stability. The numerical comparisons show that the two-phases algorithm developed in this study is safely applicable to any design criteria, and the convergency rate is very fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

Analysis of the Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Design and Development Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 설계와 개발 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 분석: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.378-392
    • /
    • 2023
  • The purpose of this study is to analyze the pre-service chemistry teachers' cognition of the nature of model in process of designing and developing models using technology. For this purpose, 19 pre-service chemistry teachers' in the 3rd grade of a education college located in the central region observe experimental phenomena related to Boyle's law presented in the 7th grade science textbook and researchers required the design and development of a model related to the observed experimental results using technology. Based on previous studies, the nature of model were classified into two aspect: 'Representational aspect' and 'Explanatory aspect'. The 'Representational aspect' was classified into 'Representation', 'Abstraction', and 'Simplification', and the 'Explanatory aspect' was classified into 'Analysis', 'Interpretation', 'Reasoning', 'Explanation', and 'Quantification'. The pre-service chemistry teachers' cognition were analyzed by the classification. As a result of the study, the 'Representation' of the 'expressive aspect' was uniformized in the form of space that changes in volume, and the pressure was expressed as the Brightness inside the cylinder or frequency of color change of particles for 'Abstraction'. In the case of 'Simplification', the particle collision was expressed as a perfectly elastic collision, but there was a group that could not simply indicate the type of particle. In the 'Explanatory aspect', in the case of 'Analysis', volume was classified as a manipulated variable, and in the case of 'Interpretation', most groups analyzed the change in pressure through the collision of gas particles. However, the cognition involved in 'Reasoning' was not observed much. In the case of 'Explanation', there were groups that did not succeed in explanation because the area where the particles collided was not set or incorrectly set, and in the case of 'Quantification', there was a group that formulated the number of collisions per unit time, and on the contrary, there was a group that could not quantify the number of collisions because they could not be expressed in numbers.

A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea (동해의 메탄 하이드레이트 매장 지역에서의 해양 심부 견인 전기비저항 탐사)

  • Goto, Tada-Nori;Kasaya, Takafumi;Machiyama, Hideaki;Takagi, Ryo;Matsumoto, Ryo;Okuda, Yoshihisa;Satoh, Mikio;Watanabe, Toshiki;Seama, Nobukazu;Mikada, Hitoshi;Sanada, Yoshinori;Kinoshita, Masataka
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • We have developed a new deep-towed marine DC resistivity survey system. It was designed to detect the top boundary of the methane hydrate zone, which is not imaged well by seismic reflection surveys. Our system, with a transmitter and a 160-m-long tail with eight source electrodes and a receiver dipole, is towed from a research vessel near the seafloor. Numerical calculations show that our marine DC resistivity survey system can effectively image the top surface of the methane hydrate layer. A survey was carried out off Joetsu, in the Japan Sea, where outcrops of methane hydrate are observed. We successfully obtained DC resistivity data along a profile ${\sim}3.5\;km$ long, and detected relatively high apparent resistivity values. Particularly in areas with methane hydrate exposure, anomalously high apparent resistivity was observed, and we interpret these high apparent resistivities to be due to the methane hydrate zone below the seafloor. Marine DC resistivity surveys will be a new tool to image sub-seafloor structures within methane hydrate zones.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.