• Title/Summary/Keyword: 탄성벽

Search Result 96, Processing Time 0.025 seconds

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 세장한 이중강판합성벽의 비선형해석)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.505-517
    • /
    • 2008
  • A numerical analysis method was studied to predict the nonlinear behavior of slender double skin composite walls. For convenience in numerical analysis, the model for the double skin composite wall was developed as a macroscopic model that can predict nonlinear behavior with relatively simplified models. For the wall showing flexure-dominant behavior, a multiple layer model was used. Each layer was modeled with composite elements of concrete and steel plate. An X-type truss model was used for coupling beams showing shear-dominant behavior. To describe the cyclic behavior of concrete and steel elements, simplified cyclic models for the materials were proposed. The proposed analysis model was applied to isolated walls and coupled walls with rectangular or T-shaped cross-sections. The analytical results were compared with existing test results.

Blood Vessel Strain Imaging Using Linear Array Transducer (선형 트랜스듀서를 이용한 혈관 변형률 영상법)

  • Ahn, Dong-Ki;Jeong, Mok-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.880-890
    • /
    • 2010
  • The intrasvascular ultrasound (IVUS) imaging technique is used to diagnose cerebrovascular diseases such as stroke. Recently, elasticity imaging methods have been investigated to diagnose blood clots attached to blood vessel intima. However, the IVUS imaging technique is an invasive method that requires a transducer to be inserted into blood vessel. In this paper, strain images are obtained of blood clots attached to blood vessel intima with data acquired from outside the blood vessel using a linear array transducer. In order to measure the displacement of blood vessel accurately, experimental data are acquired by steering ultrasound beams so that they can intersect the blood vessel wall at right angles. The acquired rf data are demodulated to the baseband. The resulting complex baseband signals are then processed by an autocorrelation algorithm to compute the blood vessel movement and thereby produce strain image. This proposed method is verified by experiments on a plastic blood vessel mimicking phantom. The efficacy of the proposed method was verified using a home-made blood vessel mimicking phantom. The blood vessel mimicking phantom was constructed by making a 6 mm diameter hollow cylinder inside it to simulate a blood vessel and adhering 2 mm thick soft plaque to the inner wall of the hollow cylinder. The RF data were acquired using a clinical ultrasound scanner (Accuvix XQ, Medison, Seoul. Korea) with a 7.5 MHz linear array transducer by steering ultrasound beams in steps of $1^{\circ}$ from $-40^{\circ}$ to $40^{\circ}$ for a total of 81 angles. Experimental results show that the plaque region near the blood vessel wall is softer than background tissue. Although the imaging region is restricted due to the limited range of angles for which scan lines are perpendicular to the wall, the feasibility of strain imaging is demonstrated.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Evaluation of Stress Characteristics and Rupture Risk of the Aortic Wall According to Abdominal Aortic Aneurysm Geometry and Age (복부대동맥류 형상 및 연령에 따른 동맥 벽 응력 특성 및 파열 위험성 평가)

  • Lee, Chung Won;You, Ji-Hun;Huh, Up;Lee, Chi-Seung;Ryu, Dong-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, the wall stress and rupture risk for abdominal aortic aneurysms were calculated based on the age and geometry of the examined abdominal aortic aneurysms. The geometry of the abdominal aorta was simulated using computed tomography data from patients with abdominal aortic aneurysms. With regard to material properties, the Gasser-Ogden-Holzapfel model was applied to the analysis to simulate the anisotropic hyperelastic characteristics of the artery. In addition, each material parameter was estimated to consider the properties for age and for normal and aneurysm tissue. Moreover, the correlation between the diameter and angle of the aortic aneurysms was analyzed based on data from patients with abdominal aortic aneurysms, and series simulations were conducted. As a result, the rupture risk for the abdominal aortic aneurysms was evaluated based on the age and geometry of the aneurysm.

Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites (다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성)

  • Yoon, Sung Ho;Park, Ji Hye
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.422-428
    • /
    • 2017
  • The moisture absorption behavior, tensile properties, and thermal analysis properties of MWCNT embedded nanocomposites exposed to temperature and moisture were evaluated. The contents of MWCNT were 0 wt%, 1 wt%, and 2 wt%, respectively. The specimens were exposed to immersed conditions at $25^{\circ}C$ and $75^{\circ}C$ for up to 600 hours. According to the results, the apparent moisture content increased as the exposure time increased, but the difference between the maximum moisture content and the moisture content at 600 hours was almost constant. The tensile modulus decreased with increasing exposure time and the degree of decrease was increased significantly as the MWCNT content and exposure temperature increased. The tensile strength decreased with longer exposure time without MWCNT, but increased with MWCNT due to the reinforcing effect of MWCNT. The storage modulus, glass transition temperature, tan d peak magnitude were low as the exposure time increased, but tan d curves with two peaks appeared when exposed to high exposure temperature for more than 300 hours.

A Study on Effect of Residual Stress on Stress Distribution of Arterial Walls Under High Blood Pressure (잔류응력 효과를 고려한 고혈압 상태에 있는 혈관벽 내의 응력분포에 대한 연구)

  • Choi, Jae-Woo;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1219-1227
    • /
    • 2011
  • Due to recent changes in living conditions, people who suffer from vascular disease have been increasing. As a result, several kinds of procedures to treat diseases of the blood vessels are being carried out and the epidemiological analysis and interpretation is needed. In this paper, the mechanical behavior of blood vessels based on hyperelastic model were evaluated. The stress distributions in the arterial walls subjected to both normal blood pressure and high blood pressure are studied along with different opening angles representing as the effect of the residual stress. As a result, when applied to residual stress effects in blood vessels to act maximum stress compared to as the absence of residual stress effect about 50% stresses can be reduced. When high blood pressure was the normal blood pressure acting on the blood vessel wall that twice stress can be confirmed.

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode (축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스)

  • Park, Chan-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

NUMERICAL ANALYSIS OF BLOOD FLOW DYNAMICS AND WALL MECHANICS IN A COMPLIANT CAROTID BIFURCATION MODEL (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, T.M.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.500-503
    • /
    • 2011
  • Blood flow simulations in an idealized carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flowrates and pressure in the carotid arteries were imposed for the boundary conditions. Comparing to rigid wall model, generally, we could find an increased recirculation region at the carotid bulb and an overall reduced wall shear stress. Also, there was appreciable change of flowrate and pressure waveform in longitudinal direction. Solid and wall shear stress concentration occurs at the bifurcation apex.

  • PDF