• Title/Summary/Keyword: 탄산

Search Result 2,181, Processing Time 0.033 seconds

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Carbonation Behavior Evaluation of OPC Concrete Considering Effect of Aging and Loading Conditions (재령 및 하중효과를 고려한 OPC 콘크리트의 탄산화 거동 평가)

  • Hwang, Sang-Hyeon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • The movement of deterioration agents such as a chloride ion, etc. in concrete varies with loading conditions and micro-structure developed by age effect. In this paper, the carbonation behavior by accelerated carbonation test is evaluated considering curing periods(28 days, 91 days, and 365 days) and loading conditions. Carbonation velocity coefficients are obtained referred to KS F 2584. In the control case without loading condition, carbonation velocity coefficient of 91 days decreases to 50.0 % level and that of 365 days decreases to 44.8 % level than that of 28 days curing condition. In 28 curing days, carbonation velocity coefficients changed level of 103.9 ~ 108.8 % in tensile region and 91.9~104.6 % in compressive region by loading conditions. Carbonation velocity coefficients in the 30 % and 60 % tensile loading case at 28 days decreases to 47.3 % and 52.5 % level compared to control case after 1 year. Furthermore, 45.8 % and 44.9 % level of carbonation velocity coefficients are evaluated for 30 % and 60 % compressive loading conditions compared to control case after 1 year. Carbonation velocity coefficient decreases in the 30 % compressive loading level due to effective pore compaction and it increases afterwards due to micro-cracking. In the tensile loading condition, unlike the behavior of compressive region, it linearly increases with increasing loading level.

Characteristics of Recycled Fine Aggregate by Sodium Carbonated Water (탄산나트륨을 이용하여 제조한 순환잔골재의 품질 특성)

  • Hong, Sung-Rog;Kim, Ha-Seog;Kwak, Eun-Gu;Park, Sun-Gyu;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Amount of disposed construction materials like waste concrete is growing fast and use of the recycled aggregate for concrete has been seriously considered. But the use of the recycled aggregate is very limited because recycled aggregate has very low quality. Therefore, quality of recycled aggregate is very important in the manufacturing of recycled aggregate concrete. We have studied a series of research according to chemical processes and investigate the alkaline elimination effect of recycled aggregate and quality variation of recycled aggregate by sodium carbonate. Thereafter we have evaluated quality of recycled fine aggregate and experimented quality of this aggregate. As a results, we find that it is easy to eliminate the calcium hydroxide in recycled aggregate by sodium carbonate and the quality of recycled aggregate increase by elimination of alkaline.

  • PDF

Synthesis of Cubic and Rod Shapes CaCO3 by Hydrothermal Method (수열합성법을 이용한 큐빅과 로드형의 탄산칼슘 합성)

  • Kang, Kuk-Hyoun;Jeon, Sang-Chul;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.255-261
    • /
    • 2016
  • $CaCO_3$ was applied in various industries including rubber, plastics, paint, paper, food additives, and acid neutralizer, etc., owing to its excellent physical and chemical characteristics as well as various appearances of crystals and many reserves. In particular, research on controlling the structure and shape of $CaCO_3$ has attracted considerable attention recently, because the whiteness and physical characteristics of $CaCO_3$ depend on the size and shapes of the particles. In this study, $CaCO_3$ was synthesized using $CaCl_2$ and $(NH4)_2CO_3$, which has multi-shapes and structures, using a self-assembly method with a hydrothermal method. The structure and morphology of the $CaCO_3$ could be controlled by adjusting the pH and precursor concentration. In particular, the pH adjustment appeared to be a critical factor for the morphology and crystal form. In addition, the calcite and cubic shape were obtained at pH 7, while the mixed calcite, aragonite structure, and rod shapes appeared at pH 7 and over. Through an analysis of the particle formation process, the formation of the calcium carbonate particles was confirmed. The physicochemical properties of the synthesized $CaCO_3$ were analyzed by SEM, XRD, EDS, FTIR, and TG/DTA.

Synthesis of splinter-type and plate-type potassium titanate as reinforcements in brake pad for automobile (스플린터 및 판상형 티탄산칼륨염 합성 및 브레이크 보강재로서의 평가)

  • Kim, Sung-Hun;Kim, Jong-Young;Shim, Wooyoung;Lee, Jung Ju;Kwon, Sung Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.329-337
    • /
    • 2019
  • We synthesized potassium titanates having splinter and plate shape and evaluated frictional and wear properties of brake pad using them as reinforcements in friction materials. For splinter-shaped potassium titanates, potassium tetratitanate (K2O·4TiO2, PT4) with plate shape was prepared, then K ion of the titanate was leached by acid to make potassium hexatitanate (K2O·6TiO2, PT6), which was transformed to splinter-shaped PT6 by thermal treatment at 800℃. Plate-shaped potassium magnesium titanate (K0.8Mg0.4Ti1.6O4, PMT) was prepared by adding Mg in the potassium titanate using KCl as a flux. Using PT6 and PMT as reinforcements in friction materials of brake pad, we evaluated frictional and wear properties using 1/5-scale dynamometer. According to dynamometer test results, both reinforcements shows similar friction coefficient and fade & recovery behavior to conventional material and plate-shaped PMT exhibits higher wear resistance than splinter-shaped PT6.

제주도 협재 지역에 분포하는 해안사구의 형성시기와 사구를 이루는 탄산염퇴적물의 구성성분

  • Kim, Jin-Gyeong;U, Gyeong-Sik;Kim, Ryeon
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.11a
    • /
    • pp.4-13
    • /
    • 2004
  • 제주도 북제주군 한림읍 협재리에는 대부분 탄산염퇴적물로 이루어진 해안사구가 분포하고 있다. 사구를 이루는 탄산염퇴적물은 연체동물과 홍조류의 조각이 약 80% 이상을 차지하며 그 외에 저서성 유공충, 성게류와 태선동물의 조각, 그리고 화산암편으로 이루어져 있어, 제주도에 분포하는 여러 탄산염 해빈퇴적물의 입자조성과 매우 유사한 경향을 나타낸다. 이러한 탄산염 입자들은 천해에 서식하던 해양생물들에 의해 생성되며, 그 각질이 해빈으로 운반되고 바람에 의해 재동되어 사구를 형성하였다. 특히 이 연구지역의 사구가 분포하는 지점에서 북쪽으로 약 1km 떨어져 있는 협재 해수욕장에는 현재에도 천해에서 생성된 많은 양의 탄산염 해빈퇴적물이 퇴적되어 있으며, 제주도의 타 지역에 비해 매우 빠른 북동${\sim}$북서방향의 바람이 불고 있어, 퇴적물을 해빈에서부터 사구형성지점으로 운반시키는 데 효과적인 역할을 했을 것으로 판단된다. 사구를 절개하여 그 단면을 관찰한 결과, 전반적으로 희미한 수평층리와 사층리가 발달하고 있으며, 그 외의 다른 뚜렷한 퇴적구조는 관찰되지 않는다. 퇴적물의 입자들은 주로 직경이 $0.27{\sim}0.40mm$로 중립질 모래에 해당한다. 이 크기의 입자들은 가장 침식이 잘 될 수 있는 입자크기에 해당하는 것으로 알려져 있으며, 따라서 해빈으로부터 퇴적물이 운반될 때에 특히 이 크기의 입자들이 차별적으로 더 많이 운반되었을 것이라고 생각된다. 또한 퇴적물 입자의 크기와 구성성분의 함량은 각 사구의 전 층준에서 크게 변화하지 않는 것으로 나타나며, 이는 사구가 형성되는 기간 동안 탄산염퇴적물을 운반한 바람의 세기가 어느 정도 일정하였음을 지시한다. 해안사구의 형성시기를 알아보기 위하여 사구의 기반을 이루는 고토양층과 사구 최하부와 최상부의 탄산염퇴적물에 대해 방사성탄소연대측정을 실시하였다. 그 결과, 사구의 형성시기를 지시하는 고토양의 연령은 $680{\sim}720\;BP\;(1,200{\sim}1,300\;AD)$로 측정되었으며, 사구를 이루는 탄산염퇴적물의 연령은 전 층준에서 모두 약 3,500 BP로 측정되었다. 따라서 약 3,500 BP에 천해에서 생성된 탄산염퇴적물이 해빈에 분포하다가 $1,200{\sim}1,300\;AD$에 바람에 의해 재동되고 현재의 위치에 쌓여 사구를 형성한 것이라고 해석할 수 있다. 사구가 형성되기 시작하던 시기는 전세계적으로 춥고 바람이 세었던 Little Ice Age ($1,300{\sim}1,820\;AD$)에 해당하며, 따라서 해빈에 분포하던 많은 양의 탄산염퇴적물이 이 시기에 집중적으로 운반된 것으로 사료된다.

  • PDF

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar (알칼리활성 고로슬래그 모르타르의 탄산화 특성)

  • Song, Keum-Il;Yang, Keun-Hyeok;Lee, Bang-Yeon;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

The Prediction Model of Carbonation Process by CO2 Diffusion Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 CO2확산 탄산화진행 예측모델)

  • Kang, Suk-Pyo;Kim, Young-Sun;Song, Ha-Won;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Recently, some mathematical models for the prediction on progress of carbonation of concrete were reported. These models take account for $CO_2$ diffusion and chemical reaction between $Ca(OH)_2$ and $CO_2$. Based on the assumption that $CO_2$ diffuses in the carbonation zone and reacts with $Ca(OH)_2$ at the outer face of carbonation zone and non-carbonation zone. In this study, a mathematical model to predict the progress of carbonation of concrete has been established based on the reducing concentration of $Ca(OH)_2$ in the carbonation progress zone, where $Ca(OH)_2$ reacts with $CO_2$ and $Ca(OH)_2$ and $CaCO_3$ coexist. Also, the prediction model of carbonation progress rate of concrete using the air permeability coefficient regarding to $CO_2$ diffusion is developed. As a result of this study, an expression, the model equation is obtained for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and Ca(OH)$_2$ dependent air permeability coefficient. The prediction by the model satisfied the experimental data of the accelerated carbonation for painted concrete. Consequently, the model can predict the rate of carbonation and the potential service life of concrete structure exposed to atmosphere.

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization (탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성)

  • Lee, Seung-Woo;Chae, Soochun;Bang, Jun-Hwan
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.