• Title/Summary/Keyword: 탄산칼륨

Search Result 80, Processing Time 0.044 seconds

Friction and Wear Characteristics of Friction Material from Scrap Tire and Potassium Hexatitanate (폐타이어분말과 육티탄산칼륨를 이용한 마찰재의 마찰.마모 특성)

  • Park, Jong-Il;Kang, Dong-Heon;Kang, Suck-Choon;Chung, Chan-Kyo;Chung, Kyung-Ho;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.3-13
    • /
    • 2001
  • To resolve environmental problem of waste tire and asbestos and also to capitalize the wastes, we developed a new kind of friction material using scrap tire, potassium hexatitanate, filler, and friction modifier in which rubber made a continuous phase. The material containing 5, 20, 10, 20phr of potassium hexatitanate, phenol, friction modifier, $BaSO_4$, respectively showed good friction properties, high and stable coefficient or friction, and low wear rate.

  • PDF

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification (수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성)

  • Park, Sung-Jin;Kim, Lae-Hyun;Shin, Hun-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.908-912
    • /
    • 2012
  • Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

A Study on the Synthesis of Potassium Hexatitanate Whisker by the Slow Cooling Calcination Process (서냉 소성법에 의한 육티탄산칼륨 Whisker의 합성에 관한 연구)

  • Lee, Chul-Tae;Choi, Ung-Su;Kim, Young-Myoung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.160-175
    • /
    • 1994
  • Fibrous potassium hexatitanate whisker with the size of $ID=0.5{\sim}1{\mu}m$ and length=$100{\sim}1000{\mu}m$ (aspect ratio=100~1000) was produced through the reaction between titanium dioxide and potassium carbonate using the slow-cooling calcination followed by water leaching treatment. The optimum condition for the production of fibrous potassium titanate was calcination temperature of $1100^{\circ}C$ for 5hrs, $TiO_2$ mole ratlo to $K_2CO_3$ of 4.5 and slow-cooling rate of $0.5^{\circ}C/min$ to $860^{\circ}C$. Fibrous crystal are grown by the association between the solid potassium titanate and liquid phase during the slow-cooling process. The Proper water leaching condition for removing of K component was leaching time of 10hrs in boiling water. Pressurizing of the mixture of $K_2CO_3$ and $TiO_2$ to be calcinated became effective on the growth of fibrous crystal.

  • PDF

Formation and Preservative Effectiveness of Inorganic Substances in Wood Treated with Potassium Carbonate and Calcium Chloride (탄산칼륨과 염화칼슘을 이용한 무기질 복합화 목재 중에 있어서 무기염의 생성과 방부효력)

  • Yoon, Sun-Mi;Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • This research is carried out to investigate the formation and preservative effectiveness of inorganic substance, calcium carbonate($CaCO_3$), in wood. The specimens were prepared by the impregnation with saturated solutions of potassium carbonate($K_2CO_3$) into the wood followed by precipitation in saturated solutions of calcium chloride($CaCl_2$) for 24h, 72h and 120h, and then they were leached in instrument flowing with water for 24h. The weight percent gains of $K_2CO_3$ solution impregnated specimens reached approximately a maximum value (108.1%) by 72h precipitation in $CaCl_2$ solutions. Inorganic substances were observed to he produced in the lumina of tracheids of specimens. From these inorganic substances filling in the tracheids, characteristic X-rays of calcium(Ca-$K_{\alpha}$) were detected by energy dispersive X-ray analyzer. Moreover, it was shown from a leaching treatment that these substances could not he leached easily from the specimens. Therefore, they were could he considered to be insoluble calcium carbonates. The weight losses of the prepared specimens were hardly occurred by test fungi attacks. Thus inorganic substances in specimens can be said to have preservative effectiveness.

  • PDF

Flux Melting Route to 2-and 3-dimensional Fibrous Potassium Titanates, K$_2Ti_{2n}O_{4n+1}$ (n = 2 and 3) (Flux 용융법에 의한 2차원 및 3 차원 구조의 티탄산칼륨 섬유의 합성)

  • Jin-Ho Choy;Yang Su Han;Seung Wan Song
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.765-772
    • /
    • 1993
  • Two-dimensional potassium tetratitanate ($K_2Ti_4O_9$) and three-dimensional potassium hexatitanate ($K_2Ti_6O_{13}$) fibers have been prepared by the combined method consisting of the flux melting (1150$^{\circ}C$)-slow cooling (cooling rate = 5$^{\circ}C$/h) process from the starting raw materials of $K_2CO_3$, and $TiO_2$ with the flux of $K_2MoO_4$. It was found that the fiber growth reaction is strongly dependent upon the mole ratio of flux (F) to raw material (R), which is 7 : 3 (F : R) as for the optimum growth condition. Relatively long fibers (average length ${\thickapprox}$ 4 mm) with a mixture of $K_2Ti_4O_9$ (major) and $K_2Ti_6O_{13}$ (minor) could be obtained when the reaction was carried out for the $K_2MoO_4-$K_2O{\cdot}4TiO_2$ (F : R = 7 : 3) system, but for the $K_2$MoO_4$-$K_2O{\cdot}6TiO_2$ (F : R = 7: 3) one, only the short fibers with ${\thickapprox}$ 2 mm long could be grown as the mixed phase of $K_2Ti_6O_{13}$ and $K_2Ti_4O_9$.

  • PDF

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.

Production of Hydrogen Gas by Thermochemical Transition of Lauan in Fixed Bed Gasification (고정층 가스화에 의한 나왕톱밥으로부터 수소제조특성)

  • Jung, Hye-Jin;Kim, Chul Ho;Son, Jae-Ek;Kim, Lae-Hyun;Shin, Hun Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.209-213
    • /
    • 2008
  • The fixed bed gasification reactor with 1 m hight and 10.2 cm diameter was utilized for the hydrogen production from biomass wastes. Lauan sawdust was used for non-catalytic and catalytic gasification reaction as a sample in the fixed bed reactor. The fixed bed temperature and catalyst are the major variables affecting the process operation. Thus, the effect of fixed bed temperature and the catalysts on gas composition were studied at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. The yield of hydrogen was increased at higher temperature in the fixed bed reaction. Fractions of hydrogen, carbon monoxide and methane gas in the product gas increased when sodium carbonate ($Na_2CO_3$) and potassium carbonate ($K_2CO_3$) catalysts were used. Furthermore, sodium carbonate catalyst was more effective to obtain higher hydrogen yield compared to potassium carbonate catalyst.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.